Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue research suggests ’nanotubes’ could make better brain probes

08.01.2004


Purdue University researchers have shown that extremely thin carbon fibers called "nanotubes" might be used to create brain probes and implants to study and treat neurological damage and disorders.



Probes made of silicon currently are used to study brain function and disease but may one day be used to apply electrical signals that restore damaged areas of the brain. A major drawback to these probes, however, is that they cause the body to produce scar tissue that eventually accumulates and prevents the devices from making good electrical contact with brain cells called neurons, said Thomas Webster, an assistant professor of biomedical engineering.

New findings showed that the nanotubes not only caused less scar tissue but also stimulated neurons to grow 60 percent more fingerlike extensions, called neurites, which are needed to regenerate brain activity in damaged regions, Webster said.


The findings are detailed in a paper appearing this month in the journal Nanotechnology, published by the Institute of Physics in the United Kingdom. The paper was written by Webster, Purdue doctoral students Janice L. McKenzie and Rachel L. Price, former postdoctoral fellow Jeremiah U. Ejiofor and visiting undergraduate student Michael C. Waid from the University of Nebraska.

The nanotubes were specially designed so that their surfaces contained tiny bumps measured in nanometers, or billionths of a meter. Conventional silicon probes do not contain the nanometer-scale surface features, causing the body to regard them as foreign invaders and surround them with scar tissue. Because the nanometer-scale features mimic those found on the surfaces of natural brain proteins and tissues, the nanotubes induce the formation of less scar tissue.

The scar tissue is produced by cells called astrocytes, which attach to the probes. The Purdue researchers discovered that about half as many astrocytes attach to the nanofibers compared to nanotubes that don’t have the small features.

"These astrocytes can’t make scar tissue unless they can adhere to the probe," Webster said. "Fewer astrocytes adhering to the nanotubes means less scar tissue will be produced."

The Purdue researchers pressed numerous nanofibers together to form discs and placed them in petri plates. Then the petri plates were filled with a liquid suspension of astrocytes. After one hour the nanotube disks were washed and a microscope was used to count how many of the dyed astrocytes washed out of the suspension, which enabled the researchers to calculate how many astrocytes stuck to the nanotubes. About 400 astrocytes per square centimeter adhered to the nanotubes containing the small surface features, compared to about 800 for nanotubes not containing the small surface features. The researchers repeated the experiment while leaving the nanotubes in the cell suspension for two weeks, yielding similar results.

When the nanotubes were placed in a suspension with neurons, the brain cells sprouted about five neurites, compared with the usual three neurites formed in suspensions with nanotubes that didn’t have the small surface features.

Researchers plan to make brain probes and implants out of a mixture of plastics and nanotubes. The findings demonstrated that progressively fewer astrocytes attached to this mixture as the concentration of nanotubes was increased and the concentration of plastics was decreased.

"That means if you increase the percentage of carbon nanofibers you can decrease the amount of scar tissue that might form around these electrodes," Webster said.

The nanometer-scale bumps mimic features found on the surface of a brain protein called laminin.

"Neurons recognize parts of that protein and latch onto it," Webster said.

The crucifix-shaped protein then helps neurons sprout neurites, while suppressing the formation of scar tissue.

The tube-shaped molecules of carbon have unusual properties that make them especially promising for these and other applications. Researchers theorize that electrons might flow more efficiently over extremely thin nanotubes than they do over conventional circuits, possibly enabling scientists to create better brain probes as well as non-silicon-based transistors and more powerful, compact computers.

"Nano" is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, or roughly the length of 10 hydrogen atoms strung together. The nanotubes were about 100 nanometers wide, or roughly 1,000 times as thin as a human hair.

The research is funded by the National Science Foundation.

Webster also plans to test the effectiveness of silicon that contains the same sort of nanometer-scale features as the nanotubes, which could increase the performance of silicon probes and implants. In work with Spire Biomedical Inc. (Nasdaq:SPIR) in Bedford, Mass., Purdue researchers will analyze silicon that contains numerous pores, unlike conventional silicon, which has no such porous features. That research is funded by the National Science Foundation and the federal Small Business Innovation Research Program.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Thomas Webster, (765) 496-7516, twebster@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Note to Journalists: An electronic copy of the research paper is available from Emil Venere, (765) 494-4709, venere@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/2004/040107.Webster.neural.html

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>