Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop nanoscale fibers that are thinner than the wavelengths of light they carry

18.12.2003


Researchers have developed a process to create wires only 50 nanometers (billionths of a meter) thick. Made from silica, the same mineral found in quartz, the wires carry light in an unusual way. Because the wires are thinner than the wavelengths of light they transport, the material serves as a guide around which light waves flow. In addition, because the researchers can fabricate the wires with a uniform diameter and smooth surfaces down to the atomic level, the light waves remain coherent as they travel.



The smaller fibers will allow devices to transmit more information while using less space. The new material may have applications in ever-shrinking medical products and tiny photonics equipment such as nanoscale laser systems, tools for communications and sensors. Size is of critical importance to sensing--with more, smaller-diameter fibers packed into the same area, sensors could detect many toxins, for example, at once and with greater precision and accuracy.

Researchers at Harvard University led by Eric Mazur and Limin Tong (also of Zhejiang University in China), along with colleagues from Tohoku University in Japan, report their findings in the Dec. 18, 2003, issue of the journal Nature.


The National Science Foundation (NSF), a pioneer among federal agencies in fostering the development of nanoscale science, engineering and technology, supports Mazur’s work. In FY 2004, NSF requested an expansion over earlier investments in critical fields including nanobiotechnology, manufacturing at the nanoscale, instrumentation and education. These efforts will enable development of revolutionary technologies that contribute to improvements in health, advance agriculture, conserve materials and energy and sustain the environment. The research will help to establish the infrastructure and workforce needed to exploit the opportunities presented by nanoscale science and engineering.

NSF comments regarding the research discovery and the Mazur group:

"Dr. Mazur’s group at Harvard has made significant contributions to the fields of optics and short-pulse laser micromachining," says Julie Chen, program director in NSF’s Nanomanufacturing program. "This new method of manufacturing subwavelength-diameter silica wires, in concert with the research group’s ongoing efforts in micromachining, may lead to a further reduction of the size of optical and photonic devices."

"Dr. Mazur is involved in exciting, broader applications for short-pulse laser research, including microsurgery, such as laser eye surgery and dermatology, and studies of neurons in microscopic nematodes," says Julie Chen, program director in NSF’s Nanomanufacturing program.

"Dr. Mazur is also extensively involved in education and outreach activities, with several high school and undergraduate students conducting research and many other middle school and high school students participating in laboratory visits," says Julie Chen, program director in NSF’s Nanomanufacturing program.

"The multidisciplinary nature of the Mazur group’s work offers an excellent training vehicle to move into other areas of research," says Denise Caldwell, one of the officers who monitors Mazur’s awards. "One researcher I met at a Physics Frontiers center was able to successfully transition from plasma physics graduate research in Mazur’s lab to a post-doctoral project on experimental neuroscience," she adds. Caldwell is a program director in NSF’s Physics Frontiers program.

"He has been a national leader in developing techniques for using interactive teaching in large physics lecture courses and in developing tools to measure student learning in physics," says Duncan McBride, Program Director in NSF’s Education and Human Resources Directorate. Dr. Mazur’s work integrates research and education, and in 2001 he received the NSF Director’s award for Distinguished Teaching Scholars.

Comment from Mazur regarding outreach:

"I have always been of the opinion that doing good science requires being a good educator," says Mazur. "What good is a scientific breakthrough if one cannot convince the public, let alone another scientist of its value?"

Josh Chamot | NSF
Further information:
http://mazur-www.harvard.edu
http://www.fastlane.nsf.gov/servlet/showaward?award=0117795
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>