Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at The University of Manchester facilitate the development of advanced magnetic materials

18.12.2003


Even without noticing this, everyday we all make use of many magnetic gadgets and devices, both at home and at work. There are dozens of magnets working in our cars and household appliances and billions of tiny magnets keep records on computer hard disks. These are just a few examples of the importance of magnetic materials in supporting our modern lifestyle.



Whether a particular material can be used in a simple appliance, such as an electric bell, or can be a part of a sophisticated electronic memory device depends crucially on how regions with different orientations of magnetic moments (simply speaking, regions having magnetic fields in either south or north pole directions) propagate through the material. These regions are called magnetic domains and boundaries between them – usually many atomic layers thick - called domain walls (see photos).

Materials where domain walls can easily move back and forth are good for electric transformers and electronic circuits. In the opposite case, where domain walls are pinned by defects and cannot move at all, a material would be a primary choice for horseshoe magnets and electric motors. Therefore, it is hardly surprising that movements of domain walls have been intensively studied since early days of the physics of magnetism (more than a century ago), which contributed greatly to the creation of better and better magnetic materials.
Now researchers at Manchester University have managed to reach the ultimate level of resolution with which it is possible to detect (or even think about) domain wall movements.



In a forthcoming article in Nature (issue of 18/25 December, 2003), Professor Andre Geim from The University of Manchester and his colleagues Dr K. Novoselov, Dr S. Dubonos, Dr E. Hill & Dr I. Grigorieva report how domain walls move on a scale smaller than the distance between neighbouring atoms in a material. The researchers discovered that at this scale domain walls no longer roll smoothly through the crystal but rather jump between adjacent rows of atoms, having to overcome a small barrier at each row. In effect, their motion reminds a ball rolling on a washboard. This ‘hurdle racing’ of domain walls was first predicted before WWII by British physicist Rudolf Peierls but, despite many earlier attempts, the phenomenon has until now eluded experimental detection. “If we were interested in entering the Guinness book, this record would stay there forever”, quips Professor Geim.

According to the researchers, their results are much more than just a record. Rather, they lead to better understanding of fundamental and technologically important phenomena governed by movements of domain walls and will facilitate the development of advanced magnetic materials.

Jo Grady | alfa
Further information:
http://www.man.ac.uk

More articles from Materials Sciences:

nachricht Metallic nanoparticles will help to determine the percentage of volatile compounds
20.10.2017 | Lomonosov Moscow State University

nachricht New material for digital memories of the future
19.10.2017 | Linköping University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

Metallic nanoparticles will help to determine the percentage of volatile compounds

20.10.2017 | Materials Sciences

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>