Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers at The University of Manchester facilitate the development of advanced magnetic materials

18.12.2003


Even without noticing this, everyday we all make use of many magnetic gadgets and devices, both at home and at work. There are dozens of magnets working in our cars and household appliances and billions of tiny magnets keep records on computer hard disks. These are just a few examples of the importance of magnetic materials in supporting our modern lifestyle.



Whether a particular material can be used in a simple appliance, such as an electric bell, or can be a part of a sophisticated electronic memory device depends crucially on how regions with different orientations of magnetic moments (simply speaking, regions having magnetic fields in either south or north pole directions) propagate through the material. These regions are called magnetic domains and boundaries between them – usually many atomic layers thick - called domain walls (see photos).

Materials where domain walls can easily move back and forth are good for electric transformers and electronic circuits. In the opposite case, where domain walls are pinned by defects and cannot move at all, a material would be a primary choice for horseshoe magnets and electric motors. Therefore, it is hardly surprising that movements of domain walls have been intensively studied since early days of the physics of magnetism (more than a century ago), which contributed greatly to the creation of better and better magnetic materials.
Now researchers at Manchester University have managed to reach the ultimate level of resolution with which it is possible to detect (or even think about) domain wall movements.



In a forthcoming article in Nature (issue of 18/25 December, 2003), Professor Andre Geim from The University of Manchester and his colleagues Dr K. Novoselov, Dr S. Dubonos, Dr E. Hill & Dr I. Grigorieva report how domain walls move on a scale smaller than the distance between neighbouring atoms in a material. The researchers discovered that at this scale domain walls no longer roll smoothly through the crystal but rather jump between adjacent rows of atoms, having to overcome a small barrier at each row. In effect, their motion reminds a ball rolling on a washboard. This ‘hurdle racing’ of domain walls was first predicted before WWII by British physicist Rudolf Peierls but, despite many earlier attempts, the phenomenon has until now eluded experimental detection. “If we were interested in entering the Guinness book, this record would stay there forever”, quips Professor Geim.

According to the researchers, their results are much more than just a record. Rather, they lead to better understanding of fundamental and technologically important phenomena governed by movements of domain walls and will facilitate the development of advanced magnetic materials.

Jo Grady | alfa
Further information:
http://www.man.ac.uk

More articles from Materials Sciences:

nachricht Magnesium magnificent for plasmonic applications
23.05.2018 | Rice University

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>