Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny nanowire could be next big diagnostic tool for doctors

17.12.2003


A tiny nanowire sensor — smaller than the width of a human hair, 1,000 times more sensitive than conventional DNA tests, and capable of producing results in minutes rather than days or weeks — could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention, Harvard scientists say.



In preliminary laboratory studies demonstrating the capability of the new sensor, the researchers showed that it has the potential to detect the gene for cystic fibrosis more efficiently than conventional tests for the disease. CF is the most common fatal genetic disease among people of European origin.

One of a growing number of promising diagnostic tools that are based on nanotechnology, the silicon sensor represents the first example of direct electrical detection of DNA using nanotechnology, according to the researchers. The sensor and the detection of the CF gene will be described in the Jan. 14 issue of the journal Nano Letters, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


"This tiny sensor could represent a new future for medical diagnostics," says study leader Charles M. Lieber, Ph.D., a professor of chemistry at Harvard and one of the leading researchers in nanotechnology.

"What one could imagine," says Lieber, "is to go into your doctor’s office, give a drop of blood from a pin prick on your finger, and within minutes, find out whether you have a particular virus, a genetic disease, or your risk for different diseases or drug interactions."

With its high sensitivity, the sensor could detect diseases never before possible with conventional tests, he says. And if all goes well in future studies, Lieber predicts that an array of sensors can ultimately be configured to a handheld PDA-type device or small computer, allowing almost instant test results during a doctor’s visit or possibly even at home by a patient. It could potentially be used to screen for disease markers in any bodily fluid, including tears, urine and saliva, he says.

The sensor also shows promise for early detection of bioterrorism threats such as viruses, the researcher says.

An experimental version of the technology consists of a thin plate about the size of a small business card containing the tiny nanowire sensor. A working prototype device suitable for testing of human blood or other body fluids could be five years away, Lieber estimates.

To demonstrate the effectiveness of the sensor device, the researchers grafted nucleic acids, the building blocks of DNA, to a silicon nanowire. The nucleic acids were specifically designed to recognize a particular mutation site in the cystic fibrosis gene that is responsible for most fatal cases of the genetic disease. The researchers then exposed the nanowire to fragments of the cystic fibrosis gene, some with the lethal mutation and some without it.

The researchers found that they could successfully distinguish between the two types of gene fragments, even down to extremely low levels that would have been missed by conventional DNA sensors, according to Lieber.

Unlike conventional DNA detection methods that require a complex procedure called PCR amplification to view the results, the nanowire sensor does not need such sophisticated and expensive techniques, which could ultimately speed up genetic testing while reducing costs.

Lieber recently helped start a company, NanoSys, Inc., that is now developing nanowire technology and other nanotechnology products. His associate in this study is Jong-in Hahm, Ph.D., a former postdoctoral fellow in his research group who is currently an assistant professor at Penn State University.

Funding for the research was provided by the Defense Advanced Research Projects Agency, National Cancer Institute and Ellison Medical Foundation.


The online version of the research paper cited above was initially published Dec. 9 on the journal’s Web site. Journalists can arrange access to this site by sending an e-mail to newsroom@acs.org or calling the contact person for this release.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>