Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny ’nanofingers’ to support sensors, other applications

08.12.2003


Sheikh Akbar


Future sensors may take the form of microscopic finger-like structures developed at Ohio State University.

Engineers here have found an easy way to carve the surface of inexpensive ceramic material into tiny filaments, creating a platform for devices that detect chemicals in the air. They could also be used to clean up toxic chemicals or gather solar energy, or to form fog-free or self-cleaning surfaces.

Each filament, or "nanofinger," consists of a single crystal of the compound titanium oxide, and measures up to five micrometers long and at most 50 nanometers wide. A micrometer is one millionth of a meter, and a nanometer is one billionth of a meter.



The new process offers a simple chemical alternative to typical machine-based methods for carving ceramics, explained Sheikh Akbar, professor of materials science and engineering and founding director of the Center for Industrial Sensors and Measurements at Ohio State. Manufacturers often use diamond-edged rotary tools, lasers, or even ultrasound, because ceramics are hard and prone to chipping.

"Machining ceramics isn’t easy," Akbar said. "This might be another way." The patent-pending process is unique, he said, because it carves uniform filaments on a very small scale.

Materials science student Sehoon Yoo discovered the process and is developing it to earn his doctoral degree, with Akbar as his advisor. Kenneth Sandhage, formerly a professor at Ohio State and now at the Georgia Institute of Technology, is also advising Yoo.

Akbar described the process December 8 during the International Conference on Materials for Advanced Technologies meeting in Singapore.

The idea for the project came to Akbar when he attended a chemistry lecture in Japan in 1998. Researchers there had learned how to carve nanometer-sized honeycombs in ceramic. But because the procedure was very complicated, the speaker remarked that it had no practical commercial use.

"I thought, this is a great platform for chemical sensing," Akbar said.

He then set Yoo to work to find a better process for carving honeycombs, and the student discovered how to carve nanofingers instead.

Yoo’s method involves baking the ceramic compound titanium dioxide at high heat inside a cloud of hydrogen gas. The hydrogen reacts with some of the oxygen in the material to create water, and heat binds the atoms of the ceramic together. What’s left is a very dense ceramic minus some oxygen atoms -- its then simply titanium oxide -- covered in a uniform array of nanofingers.

"We’re still not sure exactly how it works," Yoo said. He suspects that somehow the chemical reaction frees atoms of titanium that normally remain bound in the material.

He’s tried the same experiment with other chemical elementsoxides -- tin, cerium, and zirconium -- to no avail, and will soon examine molybdenum and tungsten. But his work with titanium has advanced to the point that he can turn a penny-sized sample of the material into a rudimentary sensor that detects hydrogen.

When a hydrogen atom touches a finger, the finger absorbsreacts with it, and releases an electron. The electron travels down the finger to the base of the material, where the charge can be detected as a sensor signal.

The nanofingers provide a large surface area -- good for capturing chemicals from the air, Akbar said.

That’s why the material would also be good for gathering light for electricity-generating solar cells. Another potential application is photocatalysis, in which light activates chemical reactions that clean contaminants from soil or water. The fingers could be coated with different chemicals for different functions, Akbar said.

"What’s really great about this process is that it involves no fancy techniques. All you need is a furnace and a cylinder of hydrogen," he added.


Contact: Sheikh Akbar, (614) 292-6725; Akbar.1@osu.edu
Sehoon Yoo, (614) 292-7427; Yoo.89@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Materials Sciences:

nachricht Nanomaterial makes laser light more applicable
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>