Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny ’nanofingers’ to support sensors, other applications

08.12.2003


Sheikh Akbar


Future sensors may take the form of microscopic finger-like structures developed at Ohio State University.

Engineers here have found an easy way to carve the surface of inexpensive ceramic material into tiny filaments, creating a platform for devices that detect chemicals in the air. They could also be used to clean up toxic chemicals or gather solar energy, or to form fog-free or self-cleaning surfaces.

Each filament, or "nanofinger," consists of a single crystal of the compound titanium oxide, and measures up to five micrometers long and at most 50 nanometers wide. A micrometer is one millionth of a meter, and a nanometer is one billionth of a meter.



The new process offers a simple chemical alternative to typical machine-based methods for carving ceramics, explained Sheikh Akbar, professor of materials science and engineering and founding director of the Center for Industrial Sensors and Measurements at Ohio State. Manufacturers often use diamond-edged rotary tools, lasers, or even ultrasound, because ceramics are hard and prone to chipping.

"Machining ceramics isn’t easy," Akbar said. "This might be another way." The patent-pending process is unique, he said, because it carves uniform filaments on a very small scale.

Materials science student Sehoon Yoo discovered the process and is developing it to earn his doctoral degree, with Akbar as his advisor. Kenneth Sandhage, formerly a professor at Ohio State and now at the Georgia Institute of Technology, is also advising Yoo.

Akbar described the process December 8 during the International Conference on Materials for Advanced Technologies meeting in Singapore.

The idea for the project came to Akbar when he attended a chemistry lecture in Japan in 1998. Researchers there had learned how to carve nanometer-sized honeycombs in ceramic. But because the procedure was very complicated, the speaker remarked that it had no practical commercial use.

"I thought, this is a great platform for chemical sensing," Akbar said.

He then set Yoo to work to find a better process for carving honeycombs, and the student discovered how to carve nanofingers instead.

Yoo’s method involves baking the ceramic compound titanium dioxide at high heat inside a cloud of hydrogen gas. The hydrogen reacts with some of the oxygen in the material to create water, and heat binds the atoms of the ceramic together. What’s left is a very dense ceramic minus some oxygen atoms -- its then simply titanium oxide -- covered in a uniform array of nanofingers.

"We’re still not sure exactly how it works," Yoo said. He suspects that somehow the chemical reaction frees atoms of titanium that normally remain bound in the material.

He’s tried the same experiment with other chemical elementsoxides -- tin, cerium, and zirconium -- to no avail, and will soon examine molybdenum and tungsten. But his work with titanium has advanced to the point that he can turn a penny-sized sample of the material into a rudimentary sensor that detects hydrogen.

When a hydrogen atom touches a finger, the finger absorbsreacts with it, and releases an electron. The electron travels down the finger to the base of the material, where the charge can be detected as a sensor signal.

The nanofingers provide a large surface area -- good for capturing chemicals from the air, Akbar said.

That’s why the material would also be good for gathering light for electricity-generating solar cells. Another potential application is photocatalysis, in which light activates chemical reactions that clean contaminants from soil or water. The fingers could be coated with different chemicals for different functions, Akbar said.

"What’s really great about this process is that it involves no fancy techniques. All you need is a furnace and a cylinder of hydrogen," he added.


Contact: Sheikh Akbar, (614) 292-6725; Akbar.1@osu.edu
Sehoon Yoo, (614) 292-7427; Yoo.89@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://www.acs.ohio-state.edu/units/research/

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>