Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin coating traps DNA on a leash

05.12.2003


A coating that tethers DNA to a glass surface and allows the molecule to attach in three different places could make DNA microarrays denser and more affordable, according to Penn State material scientists.



DNA is the basis of enormous efforts in research and development in pharmaceutical and chemical industries across the country. To assay large numbers of DNA fragments, researchers use DNA microarrays – sometimes called biochips or genome chips. Currently, manufacture of these chips is time consuming and expensive.

Glass is the common, inexpensive substrate base for optical detection in DNA microarrays. However, the glass surface is slippery and DNA will not stick in place. Penn State researchers have developed a coating made of molecules with one side that binds to glass and the other side that grabs on to DNA strands to solve this problem.


"The coating is a single molecule thick, about one nanometer," says Dr. Carlo G. Pantano, distinguished professor of materials science and director of Penn State’s Materials Research Institute. "The DNA that attaches to this flexible leash is able to act as if it were free floating."

The organic molecules that make up the coating have one end that attaches to the glass and the other end with three functional amine groups where DNA strands can interact and attach. Retention of DNA is more than 50 percent better than found on DNA microarrays using traditional coatings.

Because fluorescent markers are routinely used with DNA microarrays to locate specific DNA fragments that have hybridized, the underlying glass and the coating need to be as non-fluorescent as possible.

Pantano, working with Samuel D. Conzone and Daniel Haines, research scientists at Schott Glass Technologies, and EzzEldin Metwalli, Penn State postdoctoral fellow, chose a variety of glasses, including pure silicon dioxide, Borofloat and flat-panel display glass, to test for self fluorescence of the glass and the coated glass. The researchers found that the coating did not change the self-fluorescence of the slide.

The researchers found that silicon dioxide glass and a Schott product called Borofloat had exceptionally low self-fluorescence. Spin coating of liquid 3-trimethoxysilylpropyl diethylenetriamine, DETA, on the surface or the glass deposited a uniform mono-molecular layer coating on the glass and did not enhance self-fluorescence. The DNA strands were then pin spotted onto the surface and the surface subsequently exposed to ultra violet light or heat so that the DNA would bind to the coating.

Tests showed that the DETA coating was better than aminopropyl triethoxysilane, a standard coating currently in use. The researchers also found that silicon dioxide based microarrays had the best retention of DNA, retaining 22.5 percent of the DNA applied and as much as 17 percent higher than other substrates tested.

"Research on coatings for DNA microarrays is driven by the need to put more spots on each slide so that more potential drugs or genes can be tested at once," says Pantano. "With less self fluorescence, better adhesion of the DNA probes, and more functionality of the tethered DNA, we are moving in the right direction. Perhaps we will find a way to produce re-usable microarrays."

Schott Glass Technologies of Duryea, Pa., who has now licensed the coating, supplied the glass used in development. Penn State has filed for a patent on this work which was supported by Schott Glass and Penn State’s National Science Foundation Materials Research Science and Engineering Center (MRSEC).

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>