Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-thin coating traps DNA on a leash

05.12.2003


A coating that tethers DNA to a glass surface and allows the molecule to attach in three different places could make DNA microarrays denser and more affordable, according to Penn State material scientists.



DNA is the basis of enormous efforts in research and development in pharmaceutical and chemical industries across the country. To assay large numbers of DNA fragments, researchers use DNA microarrays – sometimes called biochips or genome chips. Currently, manufacture of these chips is time consuming and expensive.

Glass is the common, inexpensive substrate base for optical detection in DNA microarrays. However, the glass surface is slippery and DNA will not stick in place. Penn State researchers have developed a coating made of molecules with one side that binds to glass and the other side that grabs on to DNA strands to solve this problem.


"The coating is a single molecule thick, about one nanometer," says Dr. Carlo G. Pantano, distinguished professor of materials science and director of Penn State’s Materials Research Institute. "The DNA that attaches to this flexible leash is able to act as if it were free floating."

The organic molecules that make up the coating have one end that attaches to the glass and the other end with three functional amine groups where DNA strands can interact and attach. Retention of DNA is more than 50 percent better than found on DNA microarrays using traditional coatings.

Because fluorescent markers are routinely used with DNA microarrays to locate specific DNA fragments that have hybridized, the underlying glass and the coating need to be as non-fluorescent as possible.

Pantano, working with Samuel D. Conzone and Daniel Haines, research scientists at Schott Glass Technologies, and EzzEldin Metwalli, Penn State postdoctoral fellow, chose a variety of glasses, including pure silicon dioxide, Borofloat and flat-panel display glass, to test for self fluorescence of the glass and the coated glass. The researchers found that the coating did not change the self-fluorescence of the slide.

The researchers found that silicon dioxide glass and a Schott product called Borofloat had exceptionally low self-fluorescence. Spin coating of liquid 3-trimethoxysilylpropyl diethylenetriamine, DETA, on the surface or the glass deposited a uniform mono-molecular layer coating on the glass and did not enhance self-fluorescence. The DNA strands were then pin spotted onto the surface and the surface subsequently exposed to ultra violet light or heat so that the DNA would bind to the coating.

Tests showed that the DETA coating was better than aminopropyl triethoxysilane, a standard coating currently in use. The researchers also found that silicon dioxide based microarrays had the best retention of DNA, retaining 22.5 percent of the DNA applied and as much as 17 percent higher than other substrates tested.

"Research on coatings for DNA microarrays is driven by the need to put more spots on each slide so that more potential drugs or genes can be tested at once," says Pantano. "With less self fluorescence, better adhesion of the DNA probes, and more functionality of the tethered DNA, we are moving in the right direction. Perhaps we will find a way to produce re-usable microarrays."

Schott Glass Technologies of Duryea, Pa., who has now licensed the coating, supplied the glass used in development. Penn State has filed for a patent on this work which was supported by Schott Glass and Penn State’s National Science Foundation Materials Research Science and Engineering Center (MRSEC).

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Atomic structure of ultrasound material not what anyone expected
21.02.2018 | North Carolina State University

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>