Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper wire shown to be competitive with fiber optic cable for LANS

05.12.2003


Penn State engineers have developed and simulation tested a copper wire transmission scheme for distributing a broadband signal over local area networks (LANS) with a lower average bit error rate than fiber optic cable that is 10 times more expensive.



Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research who led the study, says, "Using copper wire is much cheaper than fiber optic cable and, often, the wire is already in place. Our approach can improve the capability of existing local area networks and shows that copper is a competitor for new installations in the niche LAN market."

Kavehrad presented the Penn State team’s results in a paper, 10Gbps Transmission over Standard Category-5, 5E, 6 Copper Cables, at the IEEE GLOBCOM Conference in San Francisco, Calif., Thursday, Dec. 4. His co-authors are Dr. John F. Doherty, associate professor of electrical engineering, Jun Ho Jeong, doctoral candidate in electrical engineering, Arnab Roy, a master’s candidate in electrical engineering, and Gaurav Malhotra, a master’s candidate in electrical engineering.


The Penn State approach responds to the IEEE challenge to specify a signaling scheme for a next generation broadband copper Ethernet network capable of carrying broadband signals of 10 gigabits per second. Currently, the IEEE standard carries one gigabit over 100 meters of category 5 copper wire which has four twisted pairs of wire in each cable.

"In the existing copper gigabit systems, each pair of wires carries 250 megabits per second. For a 10 gigabit system, each pair will have to carry 2.5 gigabits per sec," Kavehrad explains. "At these higher speeds, some energy penetrates into the other wires and produces crosstalk."

The Penn State scheme eliminates crosstalk by using a new error correction method they developed that jointly codes and decodes the signal and, in decoding, corrects the errors.

Kavehrad says, "Conventional wisdom says you should deal with the wire pairs one pair at a time but we look at them jointly. We use the fact that we know what signal is causing the crosstalk interference because it is the strongest signal on one of the wires." The Penn State approach also takes account of the reduction or loss of signal energy between one end of the cable and the other that can become severe in 100 meter copper systems.

"We jointly code and decode the signals in an iterative fashion and, at the same time, we equalize the signals," adds the Penn State researcher. "The new error correction approach acts like a vacuum cleaner where you first go over the rough spots and then go back again to pick up more particles."

A MATLAB simulation has shown that the scheme is possible and can achieve an average bit error rate of 10 to the minus 12 bits per second. Fiber optic cable typically achieves 10 to the minus nine. The work is continuing.


The project receives support from Cisco, Tyco, Nexan and the International Copper Association.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Combining the elements palladium and ruthenium for industry
22.09.2016 | National Institute for Materials Science

nachricht Defects at the spinterface disrupt transmission
21.09.2016 | Eberhard Karls Universität Tübingen

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>