Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Copper wire shown to be competitive with fiber optic cable for LANS


Penn State engineers have developed and simulation tested a copper wire transmission scheme for distributing a broadband signal over local area networks (LANS) with a lower average bit error rate than fiber optic cable that is 10 times more expensive.

Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research who led the study, says, "Using copper wire is much cheaper than fiber optic cable and, often, the wire is already in place. Our approach can improve the capability of existing local area networks and shows that copper is a competitor for new installations in the niche LAN market."

Kavehrad presented the Penn State team’s results in a paper, 10Gbps Transmission over Standard Category-5, 5E, 6 Copper Cables, at the IEEE GLOBCOM Conference in San Francisco, Calif., Thursday, Dec. 4. His co-authors are Dr. John F. Doherty, associate professor of electrical engineering, Jun Ho Jeong, doctoral candidate in electrical engineering, Arnab Roy, a master’s candidate in electrical engineering, and Gaurav Malhotra, a master’s candidate in electrical engineering.

The Penn State approach responds to the IEEE challenge to specify a signaling scheme for a next generation broadband copper Ethernet network capable of carrying broadband signals of 10 gigabits per second. Currently, the IEEE standard carries one gigabit over 100 meters of category 5 copper wire which has four twisted pairs of wire in each cable.

"In the existing copper gigabit systems, each pair of wires carries 250 megabits per second. For a 10 gigabit system, each pair will have to carry 2.5 gigabits per sec," Kavehrad explains. "At these higher speeds, some energy penetrates into the other wires and produces crosstalk."

The Penn State scheme eliminates crosstalk by using a new error correction method they developed that jointly codes and decodes the signal and, in decoding, corrects the errors.

Kavehrad says, "Conventional wisdom says you should deal with the wire pairs one pair at a time but we look at them jointly. We use the fact that we know what signal is causing the crosstalk interference because it is the strongest signal on one of the wires." The Penn State approach also takes account of the reduction or loss of signal energy between one end of the cable and the other that can become severe in 100 meter copper systems.

"We jointly code and decode the signals in an iterative fashion and, at the same time, we equalize the signals," adds the Penn State researcher. "The new error correction approach acts like a vacuum cleaner where you first go over the rough spots and then go back again to pick up more particles."

A MATLAB simulation has shown that the scheme is possible and can achieve an average bit error rate of 10 to the minus 12 bits per second. Fiber optic cable typically achieves 10 to the minus nine. The work is continuing.

The project receives support from Cisco, Tyco, Nexan and the International Copper Association.

Barbara Hale | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>