Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Copper wire shown to be competitive with fiber optic cable for LANS

05.12.2003


Penn State engineers have developed and simulation tested a copper wire transmission scheme for distributing a broadband signal over local area networks (LANS) with a lower average bit error rate than fiber optic cable that is 10 times more expensive.



Dr. Mohsen Kavehrad, the W. L. Weiss professor of electrical engineering and director of the Center for Information and Communications Technology Research who led the study, says, "Using copper wire is much cheaper than fiber optic cable and, often, the wire is already in place. Our approach can improve the capability of existing local area networks and shows that copper is a competitor for new installations in the niche LAN market."

Kavehrad presented the Penn State team’s results in a paper, 10Gbps Transmission over Standard Category-5, 5E, 6 Copper Cables, at the IEEE GLOBCOM Conference in San Francisco, Calif., Thursday, Dec. 4. His co-authors are Dr. John F. Doherty, associate professor of electrical engineering, Jun Ho Jeong, doctoral candidate in electrical engineering, Arnab Roy, a master’s candidate in electrical engineering, and Gaurav Malhotra, a master’s candidate in electrical engineering.


The Penn State approach responds to the IEEE challenge to specify a signaling scheme for a next generation broadband copper Ethernet network capable of carrying broadband signals of 10 gigabits per second. Currently, the IEEE standard carries one gigabit over 100 meters of category 5 copper wire which has four twisted pairs of wire in each cable.

"In the existing copper gigabit systems, each pair of wires carries 250 megabits per second. For a 10 gigabit system, each pair will have to carry 2.5 gigabits per sec," Kavehrad explains. "At these higher speeds, some energy penetrates into the other wires and produces crosstalk."

The Penn State scheme eliminates crosstalk by using a new error correction method they developed that jointly codes and decodes the signal and, in decoding, corrects the errors.

Kavehrad says, "Conventional wisdom says you should deal with the wire pairs one pair at a time but we look at them jointly. We use the fact that we know what signal is causing the crosstalk interference because it is the strongest signal on one of the wires." The Penn State approach also takes account of the reduction or loss of signal energy between one end of the cable and the other that can become severe in 100 meter copper systems.

"We jointly code and decode the signals in an iterative fashion and, at the same time, we equalize the signals," adds the Penn State researcher. "The new error correction approach acts like a vacuum cleaner where you first go over the rough spots and then go back again to pick up more particles."

A MATLAB simulation has shown that the scheme is possible and can achieve an average bit error rate of 10 to the minus 12 bits per second. Fiber optic cable typically achieves 10 to the minus nine. The work is continuing.


The project receives support from Cisco, Tyco, Nexan and the International Copper Association.

Barbara Hale | EurekAlert!
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

nachricht New mechanical metamaterials can block symmetry of motion, findings suggest
14.02.2017 | University of Texas at Austin

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>