Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metallic foams

04.12.2003


INASMET Technological Centre is working on a project to develop metallic foams. Metal foams and cellular metals have become one the preferred research fields in mew materials in recent times. Given their special structure and extreme lightness, they have enormous potential for use in a never-ending list of applications in diverse industrial sectors.



Metallic foams are, as their name indicates, metallic materials with a porous structure. They can take either the form an open structure of interconnected pores, similar to a bath sponge or a closed structure of pores not connected to each other.

They have very low density (between 0.03-0.2 g/cc) at the same time showing some of the properties of the metal of which they are made up, together with other characteristics due to its particular structure. Thus, they are materials with a combination of very special physicochemical and mechanical properties, to such an extent that the series of properties they show is not currently covered by other materials, at the same time as they improve their respective applications.


In fact, the term best suited to define this type of materials would be ’multifuntionality’. They can be used in structural applications (given their excellent rigidity/weight ratio, durability, etc.) or in energy absorption of impacts and explosions (due to their capacity for isotropic absorption of energy at low and constant stress). They can also be used as noise and vibration absorbers and heat interchangers, as a basis for catalisers, etc.

Manufacture of closed-pore metal foams is almost exclusively centred on aluminium foams, while other alloys need to be researched and developed further (steel, copper, etc). There are a number of manufacturing processes and, using one or another method, sheets of foam material or complex shapes can be obtained.

Sheet material is used in a number of applications: reducing noise on roads and bridges, fire protection in buildings, impact-resisting structures for automobiles, etc. A second method enables the manufacture of complex shapes of metal foam with a solid external ’skin’. This enables the production of an endless array of applications with complex geometrical shapes. An example of the application of sandwich-type parts is in the majority of impact-resisting structures used in automobiles for improved passive safety (crash-boxes, doors, roofs), as well as ultralight structures.

Unlike closed-pore metal foams, the manufacture of open-pore foams is mainly based on the use of filler material and polymeric moulds the shapes of which are reproduced in metal, with the subsequent elimination of the mould. These types of structures can be made in almost any type of metal (Al, Cu, Mg, Fe, steel, etc.), both by casting and by processes of pulvimetallurgy, chemical deposition, etc.

In conclusion, metal foams can be seen as a future technology with high growth prospects in industrial use in the short- and medium term, given that they respond perfectly to the exigencies from a variety of markets: reducing weight in structures, safety in transport, noise reduction, yield enhancement in industrial processes, etc. All this at a competitive cost, which contributes substantially to business efficiency and competitiveness.

Contact :
Haridian Cubillo Oliva
INASMET
hcubillo@inasmet.es
(+34) 943 003700

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=366&hizk=I
http://www.inasmet.es

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>