Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Metallic foams


INASMET Technological Centre is working on a project to develop metallic foams. Metal foams and cellular metals have become one the preferred research fields in mew materials in recent times. Given their special structure and extreme lightness, they have enormous potential for use in a never-ending list of applications in diverse industrial sectors.

Metallic foams are, as their name indicates, metallic materials with a porous structure. They can take either the form an open structure of interconnected pores, similar to a bath sponge or a closed structure of pores not connected to each other.

They have very low density (between 0.03-0.2 g/cc) at the same time showing some of the properties of the metal of which they are made up, together with other characteristics due to its particular structure. Thus, they are materials with a combination of very special physicochemical and mechanical properties, to such an extent that the series of properties they show is not currently covered by other materials, at the same time as they improve their respective applications.

In fact, the term best suited to define this type of materials would be ’multifuntionality’. They can be used in structural applications (given their excellent rigidity/weight ratio, durability, etc.) or in energy absorption of impacts and explosions (due to their capacity for isotropic absorption of energy at low and constant stress). They can also be used as noise and vibration absorbers and heat interchangers, as a basis for catalisers, etc.

Manufacture of closed-pore metal foams is almost exclusively centred on aluminium foams, while other alloys need to be researched and developed further (steel, copper, etc). There are a number of manufacturing processes and, using one or another method, sheets of foam material or complex shapes can be obtained.

Sheet material is used in a number of applications: reducing noise on roads and bridges, fire protection in buildings, impact-resisting structures for automobiles, etc. A second method enables the manufacture of complex shapes of metal foam with a solid external ’skin’. This enables the production of an endless array of applications with complex geometrical shapes. An example of the application of sandwich-type parts is in the majority of impact-resisting structures used in automobiles for improved passive safety (crash-boxes, doors, roofs), as well as ultralight structures.

Unlike closed-pore metal foams, the manufacture of open-pore foams is mainly based on the use of filler material and polymeric moulds the shapes of which are reproduced in metal, with the subsequent elimination of the mould. These types of structures can be made in almost any type of metal (Al, Cu, Mg, Fe, steel, etc.), both by casting and by processes of pulvimetallurgy, chemical deposition, etc.

In conclusion, metal foams can be seen as a future technology with high growth prospects in industrial use in the short- and medium term, given that they respond perfectly to the exigencies from a variety of markets: reducing weight in structures, safety in transport, noise reduction, yield enhancement in industrial processes, etc. All this at a competitive cost, which contributes substantially to business efficiency and competitiveness.

Contact :
Haridian Cubillo Oliva
(+34) 943 003700

Garazi Andonegi | Basque research
Further information:

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>