Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Metallic foams

04.12.2003


INASMET Technological Centre is working on a project to develop metallic foams. Metal foams and cellular metals have become one the preferred research fields in mew materials in recent times. Given their special structure and extreme lightness, they have enormous potential for use in a never-ending list of applications in diverse industrial sectors.



Metallic foams are, as their name indicates, metallic materials with a porous structure. They can take either the form an open structure of interconnected pores, similar to a bath sponge or a closed structure of pores not connected to each other.

They have very low density (between 0.03-0.2 g/cc) at the same time showing some of the properties of the metal of which they are made up, together with other characteristics due to its particular structure. Thus, they are materials with a combination of very special physicochemical and mechanical properties, to such an extent that the series of properties they show is not currently covered by other materials, at the same time as they improve their respective applications.


In fact, the term best suited to define this type of materials would be ’multifuntionality’. They can be used in structural applications (given their excellent rigidity/weight ratio, durability, etc.) or in energy absorption of impacts and explosions (due to their capacity for isotropic absorption of energy at low and constant stress). They can also be used as noise and vibration absorbers and heat interchangers, as a basis for catalisers, etc.

Manufacture of closed-pore metal foams is almost exclusively centred on aluminium foams, while other alloys need to be researched and developed further (steel, copper, etc). There are a number of manufacturing processes and, using one or another method, sheets of foam material or complex shapes can be obtained.

Sheet material is used in a number of applications: reducing noise on roads and bridges, fire protection in buildings, impact-resisting structures for automobiles, etc. A second method enables the manufacture of complex shapes of metal foam with a solid external ’skin’. This enables the production of an endless array of applications with complex geometrical shapes. An example of the application of sandwich-type parts is in the majority of impact-resisting structures used in automobiles for improved passive safety (crash-boxes, doors, roofs), as well as ultralight structures.

Unlike closed-pore metal foams, the manufacture of open-pore foams is mainly based on the use of filler material and polymeric moulds the shapes of which are reproduced in metal, with the subsequent elimination of the mould. These types of structures can be made in almost any type of metal (Al, Cu, Mg, Fe, steel, etc.), both by casting and by processes of pulvimetallurgy, chemical deposition, etc.

In conclusion, metal foams can be seen as a future technology with high growth prospects in industrial use in the short- and medium term, given that they respond perfectly to the exigencies from a variety of markets: reducing weight in structures, safety in transport, noise reduction, yield enhancement in industrial processes, etc. All this at a competitive cost, which contributes substantially to business efficiency and competitiveness.

Contact :
Haridian Cubillo Oliva
INASMET
hcubillo@inasmet.es
(+34) 943 003700

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=366&hizk=I
http://www.inasmet.es

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>