Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Materials could make for super LEDs, solar cells, computer chips

03.12.2003


Engineers at Ohio State University have overcome a major barrier in the manufacture of high quality light emitting devices and solar cell materials.


Engineers at Ohio State University have built bright light-emitting diodes (LEDs) on silicon substrates. One such LED is shown here. The new LEDs have a display quality comparable to that of traditional LEDs. Photo courtesy of Ohio State University.



Steven Ringel, professor of electrical engineering, and his colleagues have created special hybrid materials that are virtually defect-free -- an important first step for making ultra-efficient electronics in the future.

The same technology could also lead to faster, less expensive computer chips.


Ringel directs Ohio State’s Electronic Materials and Devices Laboratory, where he and his staff grow thin films of “III-V” semiconductors -- materials made from elements such as gallium and arsenic, which reside in groups III and V of the chemical periodic table.

Because III-V materials absorb and emit light much more efficiently than silicon, these materials could bridge the gap between traditional silicon computer chips and light-related technologies, such as lasers, displays, and fiber optics.

Researchers have tried for years to combine III-V materials with silicon, but only with limited success. Now that Ringel has succeeded in producing the combination with record quality, he has set his sights on a larger goal.

“Ultimately, we’d like to develop materials that will let us integrate many different technologies on a single platform,” Ringel said.

Key to Ringel’s strategy is the idea of a “virtual substrate” -- a generic chip-like surface that would be compatible with many different kinds of technologies, and could easily be tailored to suit different applications.

Ohio State graduate student Ojin Kwon reported the project’s latest results December 2 at the Materials Research Society meeting in Boston. Other coauthors include graduate student John Boeckl, also of Ohio State; and postdoctoral researcher Minjoo Lee, graduate student Arthur Pitera, and professor Eugene Fitzgerald, all of the Massachusetts Institute of Technology.

Ringel’s current materials design consists of a substrate of silicon topped with III-V materials such as gallium and arsenide, with hybrid silicon-germanium layers sandwiched in-between. The substrate is 0.7 millimeters thick, while the gallium arsenide layer is only 3 micrometers -- millionths of a meter -- thick.

Other labs have experimented with III-V materials grown on silicon, but none have been able to reduce defect levels below a critical level that would enable devices like light emitting diodes and solar cells to be achieved, Ringel said.

Defects occur when the thin layers of atoms in a film aren’t lined up properly. Small mismatches between layers rob the material of its ability to transmit electrical charge efficiently.

Ringel and his colleagues grew films of III-V semiconductors with a technique known as molecular beam epitaxy, in which evaporated molecules of a substance settle in thin layers on the surface of the silicon-germanium alloy. They then used techniques such as transmission electron microscopy to search for defects.

Defects are missing or misplaced atoms that trap electrons within the material, Ringel explained. That’s why engineers typically measure the quality of a solar cell material in terms of carrier lifetime -- the length of time an electron can travel freely through a material without falling into a defect.

Other experimental III-V materials grown on silicon have achieved carrier lifetimes of about two nanoseconds, or two billionths of a second. Ringel’s materials have achieved carrier lifetimes in excess of 10 nanoseconds.

The engineers have crafted the III-V material into one-square-inch versions of solar cells in the laboratory, and achieved 17 percent efficiency at converting light to electricity. They have also built bright light-emitting diodes (LEDs) on silicon substrates that have a display quality comparable to that of traditional LEDs.

The next phase in this research will carry Ringel’s materials into space, as part of NASA’s Materials International Space Station Experiment (MISSE). An international partner spacecraft will deliver samples of the materials to the space station so they can be tested and possibly developed for use in future spacecraft.

This work was funded by the Army Research Office and the National Science Foundation.


Contact: Steven Ringel, (614) 292-6904; Ringel.1@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | OSU
Further information:
http://researchnews.osu.edu/archive/35led.htm

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>