Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team mines for new materials with a computer

18.11.2003


Ultimate goal: a public online database



A computational technique used to predict everything from books that a given customer might like to the function of an unknown protein is now being applied by MIT engineers and colleagues to the search for new materials.

The team’s ultimate goal: a public online database that could aid the design of materials for almost any application, from nanostructure computer components to ultralight, high-strength alloys for airplanes.


The technique, known as data mining, uses statistics and correlations to search for patterns within a large data set. Those patterns can then be used to predict an unknown. "Amazon.com, for example, tracks a customer’s past purchases, then uses data mining to suggest, based on those purchases, additional books the customer might like," said Dane Morgan, a research associate in the Department of Materials Science and Engineering (DMSE).

The technique also has applications in science. Applied to a protein database containing "essentially all the known data on protein structure," Morgan said, data mining "assists researchers in exploring the structure, properties and functions of other proteins."

Now Morgan and colleagues have shown that data mining can also make the search for new materials easier. They describe their work in a recent paper in Physical Review Letters.

Authors are Stefano Curtarolo (Ph.D. 2003); Morgan; Gerbrand Ceder, the R.P. Simmons Professor of Computational Materials Science; Kristin Persson, an MIT postdoctoral associate when the work was conducted; and John Rodgers of Toth Information Systems in Canada. Curtarolo, now an assistant professor at Duke University, wrote his thesis on the work and is continuing to develop it in collaboration with his MIT colleagues.

Throughout history, scientists have created new materials with novel characteristics by experimentation, essentially melting together existing materials, then painstakingly characterizing the structure of the resulting product. "The behavior of any material flows from its structure," Morgan noted.

With state-of-the-art computational techniques, or ab initio methods, engineers can now do "virtual" screenings of potential materials. A computer predicts what structure and properties a given mixture might have, based on fundamental equations of quantum mechanics. Ceder’s Lab for Computational Materials Science specializes in ab initio calculations.

Even these virtual screenings, however, can be time-consuming and costly because "there are still so many possible structures for any given material that it’s impractical for the computer to explore them all," Morgan said.

The new MIT technique "establishes patterns among the many thousands of different possible structures" for a given mixture of materials, he said. "These patterns can then be used to greatly reduce the number of structures the computer has to explore."

To date, the MIT team has tested the technique on a relatively small homegrown database. Recently, however, they received funding from the National Science Foundation to produce a public online database "that will allow the whole computational materials community to contribute calculated data," Morgan said.

The team is excited that the materials database will allow the "recycling" of data from past ab initio computer calculations and laboratory experiments. "Until now, researchers have made no formal use of their older calculations, simply starting again with each new material, thereby throwing away a huge amount of information," Curtarolo said.

"Just as recycling old cans allows one to avoid waste, the ability to recycle old calculated data will avoid wasted and useless calculations in the future. In addition, old calculations for already investigated systems might be used to predict properties of new systems.

"We believe this database and associated data-mining tools will become a standard tool for scientists studying new materials systems," Curtarolo concluded.


The Lab for Computational Materials Science is funded by the Department of Energy and the MIT Center for Materials Science and Engineering through the MRSEC program of the National Science Foundation. In addition, Hewlett-Packard recently donated a million-dollar supercomputer to the lab.

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Materials Sciences:

nachricht New value added to the ICSD (Inorganic Crystal Structure Database)
27.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>