Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery could lead to new ways to create nano-fibers and wires

14.11.2003


This computer-generated series of images illustrates a surprising discovery about the formation of drops from nozzles such as those in inkjet printers. A team led by researchers at Purdue University and the University of Chicago has shown that the drops form differently when the nozzle is immersed into sticky liquids, such as honey or silicone oil, which have greater viscosity than the drop. As the drop forms, so does a long, thin threadlike attachment. If the drop is made of certain chemicals, this thin thread can be quickly solidified by exposing it, for example, to "photo-polymerizing" light. The method might be used to create fibers, wires and particles only a few nanometers wide, which could have numerous applications, from composite materials to a new class of electronics and pharmaceutical products. (Ron Suryo and Osman Basaran/Purdue University School of Chemical Engineering)


A research team led by engineers at Purdue University and physicists at the University of Chicago has made a discovery about the formation of drops that could lead to new methods for making threads, wires and particles only a few nanometers wide.

Such nano-threads, wires and particles could, in turn, have numerous applications, including new kinds of composite materials, electronic circuits and pharmaceutical products, said Osman Basaran, a professor in Purdue’s School of Chemical Engineering.

The researchers made the discovery while studying how liquid drops and gas bubbles are formed by nozzles, such as those in inkjet printers. A widely accepted universal rule holds that, no matter what the liquid or gas is made of, drops and bubbles always break away from a nozzle the same way: As the drop is forming, it is attached to the nozzle by a thin segment of liquid or gas. This connecting segment grows progressively thinner, and as its width gets closer and closer to zero it breaks at a single point and the drop falls away from the nozzle.



"This breaking region, which I and others have been studying, has some really amazing properties," Basaran said. "It always breaks the same way, no matter how big a nozzle is or how fast you are flowing the liquid."

The researchers, however, have discovered an exception to this no-longer universal rule, Basaran said.

Findings will be detailed in a paper to appear in Friday’s (11/14) issue of the journal Science. The paper was written by former Purdue chemical engineering doctoral student Pankaj Doshi, who is now a postdoctoral fellow at the Massachusetts Institute of Technology; Itai Cohen, a former physics doctoral student at the University of Chicago and now a postdoctoral fellow at Harvard University; Wendy W. Zhang, an assistant professor of physics at the University of Chicago; Michael Siegel, a mathematician from the New Jersey Institute of Technology; Peter Howell, a mathematician at the Mathematical Institute in Oxford, England; Basaran; and Sidney R. Nagel, a professor of physics at the University of Chicago.

Drops usually form in air, which has much lower viscosity than liquid. For example, water dripping from a faucet is more viscous than the surrounding air.

If, however, a nozzle is immersed into a sticky liquid like honey or silicone oil, which is thousands of times thicker than water, the water drops form differently than they would in air.

"First of all, the drops take much longer to form," Basaran said.

Moreover, instead of abruptly breaking off, the segment of liquid between the forming drop and the nozzle’s tip continues to grow into a narrow thread and eventually becomes much longer than it would if the drop were forming in air.

"In this special case, this region doesn’t shrink to a point and break off like it ordinarily would," Basaran said. "Mathematically, we say that it ’remembers’ its initial state, which is very unusual."

Rather than separating from the nozzle at a single point, the liquid cuts away in two places: at the point where the drop has formed and at a point closer to the nozzle. The drop falls away, but an extremely thin thread of liquid or gas also separates from the nozzle.

If the liquid contains certain chemicals, the threadlike segment can be quickly solidified by exposing it to "photo-polymerizing" light, creating extremely thin filaments or fibers of uniform thickness.

Researchers were surprised by the potential for practical applications.

"Initially we just thought it was a new scientific discovery, which it is because it violates everything that was known," Basaran said. "This thin thread forms so slowly – which was also unexpected – that you have enough time to solidify it into a filament or wire."

Chemical engineers at Purdue have performed mathematical calculations and computer simulations to explain the phenomenon, and physicists at the University of Chicago have carried out experiments in which they have created fibers less than 100 nanometers wide.

Nano is a prefix meaning one-billionth, so a nanometer is one-billionth of a meter, or roughly the length of 10 hydrogen atoms strung together.

Researchers deduced a mathematical formula that can be used to predict how long and thin the filaments will grow before they break away from the nozzle. The formula is essentially the viscosity of the outside liquid divided by the viscosity of the liquid inside the drop.

This ratio of viscosities has been used experimentally to make filaments of varying lengths and widths. The greater the difference in viscosity, the thinner and longer the filaments become.

"If we make the outer liquid more and more viscous, we can make it quite long," Basaran said. "There is no known limit as to how long and how narrow you can make this. You can just play around with the viscosity ratio.

"My student at Purdue did the computations that led to the explanation of this phenomenon, and the mathematicians developed a more simplified explanation of what was going on. So it was really a big collaborative effort."

The researchers have been involved in the work for about two years, initially observing the phenomenon in experiments and later developing mathematical explanations.

"At first we couldn’t explain it because it contradicted what was known about how drops form," Basaran said.

He said the method might one day be used to make flexible nano-wires out of many types of materials that conduct electricity, including polymers.

Scientists hope to eventually produce wires so thin that their diameter is smaller than the width of an electron’s wavelength, which could be used to dramatically alter the flow of electricity and heat. It is possible that other researchers might use such wires to develop a new class of electronics, solid-state refrigerators, air conditioners and power generators.

The research was funded by the U.S. Department of Energy’s Basic Energy Sciences program and the National Science Foundation. The ongoing Department of Energy funding is for "basic research," which is carried out with no specific practical applications in mind.

"People should understand the benefits of basic research and how it results in discoveries that were not predicted," Basaran said.

The work is continuing at Purdue, with funding from the Department of Energy and private corporations.

"The type of drop breakup discovered and its potential applications are just one small piece of the ’drop-breakup puzzle,’" Basaran said.


Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Sources: Osman Basaran, Cell Phone (765) 414-3369, obasaran@ecn.purdue.edu
Steven Koppes, (773) 702-8366, skoppes@uchicago.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031113.Basaran.nanothreads.html

More articles from Materials Sciences:

nachricht Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously
17.01.2017 | Sonderforschungsbereich 668

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>