Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermal Superconductivity in Carbon Nanotubes Not So “Super” When Added to Certain Materials

12.11.2003


Superb conductors of heat and infinitesimal in size, carbon nanotubes might be used to prevent overheating in next-generation computing devices or as fillers to enhance thermal conductivity of insulating materials, such as durable plastics or engine oil. But a research team at Rensselaer Polytechnic Institute has discovered that the nanotubes’ role as thermal superconductors is greatly diminished when mixed with materials such as polymers that make up plastics.



“Carbon nanotubes are superior thermal conductors by themselves. But, that doesn’t mean they will exhibit the same level of high conductivity when integrated into other materials,” says Pawel Keblinski, assistant professor of materials science and engineering and head of Rensselaer’s research team. His team’s research is published in this month’s issue of Nature Materials.

A global team of researchers was optimistic when a one-percent fraction of carbon nanotubes was added to epoxy and other organic materials, and the thermal conductivity of the newly created composites increased two- or threefold. But, using conventional engineering estimates, Keblinski noted that the composites’ conductivity should have had 50-fold increases.


Why such disparity between the experiment and the expectations?

“Atoms forming stiff carbon nanotubes vibrate at much higher frequencies than the atoms in the surrounding material. This leads to high interfacial resistance for the heat flow between the tubes and the other elements,” Keblinski says.

Energy exchange between two different elements is immediate and plentiful when frequencies in both are similar. Interfacial resistance happens when the frequencies are different, and the heat energy has a difficult time taking the leap from one element to the next.

To test the magnitude of the problem, Keblinski and his Rensselaer collaborators performed computer simulations on a model nanotube composite. Meanwhile, another research group headed by David Cahill at the University at Illinois at Urbana Champaign, heated real carbon nanotubes with a laser.

From the rate of cooling, in both the simulation and the physical experiment, the researchers derived the value of the interfacial resistance. In both instances, they found the resistance is so high that it limits the thermal conductivity of the nanotubes.

One way to reduce the interfacial resistance in such nanocomposites is to induce a stronger bond between the nanotube and other materials to make it easier for heat to cross from one element to the next. However, extensive bonding may distort the original nanotube structure that allows the tubes to be a superconductor of heat in the first place.

Still, Keblinski is optimistic about the use of carbon nanotubes to improve insulating materials. “By adding a small fraction of carbon nanotubes to such materials, we can still increase the thermal as well as electrical conductivity. So, although we may have to lower our expectations, we have not given up hope quite yet that nanotubes will improve materials for a number of applications,” Keblinski says.


About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | Rensselaer News

More articles from Materials Sciences:

nachricht Move over, Superman! NIST method sees through concrete to detect early-stage corrosion
27.04.2017 | National Institute of Standards and Technology (NIST)

nachricht Control of molecular motion by metal-plated 3-D printed plastic pieces
27.04.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>