Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoparticles Make Silicone Rubber Clearly Stronger

27.10.2003


Silicone rubber and other rubber-like materials have a wide variety of uses, but in almost every case they must be reinforced with particles to make them stronger or less permeable to gases or liquids. University of Cincinnati (UC) chemistry professor James Mark and colleagues have devised a technique that strengthens silicone rubber with nanoscale particles, but leaves the material crystal clear.



Silicone rubber is often reinforced by tiny particles of silica (the primary component of sand and the mineral quartz). However, those silica particles can cloud the silicone rubber, which is a problem for protective masks, contact lenses and medical tubing that rely on silicone rubber’s transparency.

Mark, along with graduate student Guru Rajan, UC professor Dale Schaefer, UC associate professor Gregory Beaucage and Yeungnam University (Korea) professor Gil Sur reported on their new technique in the August 15 issue of the Journal of Polymer Science Part B: Polymer Physics.


The technique infuses silicone rubber with nanoparticles up to five times smaller than the silica particles formed by comparable methods while still providing the same level of reinforcement and maintaining the silicone rubber’s clarity.

Variations on the technique might also be used to enhance other properties of silicone rubber and similar materials, affecting such traits as impermeability to gases or liquids. This could lead to better masks or suits to protect against agents that might be used in terrorist attacks.

The team’s technique is an improvement over related methods that use a chemical reaction to create silica particles within the silicone polymers. By generating the required catalyst in place from a tin salt and by restricting the amount of water to only that absorbed from water vapor in the air, the silica particles remain smaller—only 30 nm to 50 nm across—and are evenly dispersed throughout the silicone rubber. At that size, smaller than the wavelength of ultraviolet and visible light, the silica nanoparticles are essentially invisible.

NSF Media Contact: David Hart, 703-292-7737, dhart@nsf.gov

NSF Science Experts: Andrew Lovinger, 703-292-4933, alovinge@nsf.gov
Triantafillos J. Mountziaris, 703-292-8371, tmountzi@nsf.gov

Principal Investigators: James Mark, 513-556-9292, james.mark@uc.edu
Gregory Beaucage, 513-556-3063, gregory.beaucage@uc.edu

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip031027.htm#third

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>