Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create "Smart," Switchable Surfaces

27.10.2003


Molecular coating could aid nanoscale assembly, microfuidics



Materials researchers at Iowa State University, working in part under a grant from the National Science Foundation, have demonstrated a novel coating that makes surfaces "smart"—meaning the surfaces can be switched back and forth between glassy-slick and rubbery on a scale of nanometers, the size of just a few molecules.

Possible applications include the directed assembly of inorganic nanoparticles, proteins, and nanotubes, and the ultra-precise control of liquids flowing through microfluidic devices that are finding their way into biomedical research and clinical diagnostics.


The new coating is a single layer of Y-shaped "brush" molecules, according to principal investigators Vladimir V. Tsukruk and Eugene R. Zubarev, lead authors on a report of the work in the September 16 issue of the journal Langmuir.

Each molecule attaches to the surface at the base of the Y, which forms a kind of handle for the brush, and extends two long arms outward to form the bristles. The coating can be switched because one arm is a polymer that is hydrophilic, or attracted to water, while the other is a polymer that is hydrophobic, or repelled by water.

Thus, say the researchers, when the coated surface is exposed to water, the molecules collapse into a series of mounds about 8 nanometers wide, with the hydrophilic arms on top shielding the hydrophobic arms inside. Conversely, when the surface is treated with an organic solvent such as toluene, the surface spontaneously reorganizes itself into mounds that have the hydrophobic arms on top.

Not surprisingly, the two states are very different when it comes to properties such as stickiness and the ability to become "wet."

In future work, the Iowa State team hopes to coax the mounds into an ordered pattern, instead of the current random scatter, which may allow the researchers to make surfaces that are lubricating in one direction and sticky in others.

NSF Media contact: M. Mitchell Waldrop, (703) 292-7752, mwaldrop@nsf.gov

NSF Program manager: Andrew Lovinger, (703) 292-4933, alovinge@nsf.gov

Principal Investigators: Vladimir Tsukruk, (515) 294-6904, Vladimir@iastate.edu
Eugene R. Zubarev, (515) 294-9465, zubarev@iastate.edu

Josh Chamot | NSF
Further information:
http://www.nsf.gov/od/lpa/news/03/tip031027.htm#first

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>