Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Create "Smart," Switchable Surfaces


Molecular coating could aid nanoscale assembly, microfuidics

Materials researchers at Iowa State University, working in part under a grant from the National Science Foundation, have demonstrated a novel coating that makes surfaces "smart"—meaning the surfaces can be switched back and forth between glassy-slick and rubbery on a scale of nanometers, the size of just a few molecules.

Possible applications include the directed assembly of inorganic nanoparticles, proteins, and nanotubes, and the ultra-precise control of liquids flowing through microfluidic devices that are finding their way into biomedical research and clinical diagnostics.

The new coating is a single layer of Y-shaped "brush" molecules, according to principal investigators Vladimir V. Tsukruk and Eugene R. Zubarev, lead authors on a report of the work in the September 16 issue of the journal Langmuir.

Each molecule attaches to the surface at the base of the Y, which forms a kind of handle for the brush, and extends two long arms outward to form the bristles. The coating can be switched because one arm is a polymer that is hydrophilic, or attracted to water, while the other is a polymer that is hydrophobic, or repelled by water.

Thus, say the researchers, when the coated surface is exposed to water, the molecules collapse into a series of mounds about 8 nanometers wide, with the hydrophilic arms on top shielding the hydrophobic arms inside. Conversely, when the surface is treated with an organic solvent such as toluene, the surface spontaneously reorganizes itself into mounds that have the hydrophobic arms on top.

Not surprisingly, the two states are very different when it comes to properties such as stickiness and the ability to become "wet."

In future work, the Iowa State team hopes to coax the mounds into an ordered pattern, instead of the current random scatter, which may allow the researchers to make surfaces that are lubricating in one direction and sticky in others.

NSF Media contact: M. Mitchell Waldrop, (703) 292-7752,

NSF Program manager: Andrew Lovinger, (703) 292-4933,

Principal Investigators: Vladimir Tsukruk, (515) 294-6904,
Eugene R. Zubarev, (515) 294-9465,

Josh Chamot | NSF
Further information:

More articles from Materials Sciences:

nachricht From ancient fossils to future cars
21.10.2016 | University of California - Riverside

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>