Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Doped liquid crystals allow real time holography

21.10.2003


The addition of buckyballs or carbon nanotubes to nematic liquid crystals changes their properties and makes them low-cost alternatives for holographic and image processing applications, according to Penn State electrical engineers.



"By incorporating nanotubular and nano carbon 60 structures into liquid crystals, we make the nonlinear optical properties a million times bigger than all other existing materials," says Dr. Iam-Choon Khoo, professor of electrical engineering.

Khoo, working with Jim Ding, Yana Zhang, Ken Chen and Andres Diaz, dissolved carbon nanotubes in a liquid crystal.


"We know it is dissolving because there is a color change," says Khoo.

They also dissolved carbon 60 or buckyballs into the liquid crystals. While the tubes produce slightly more of an optical effect, they are more difficult to dissolve in the liquid crystal. In fact, only about one one-thousandth of the liquid crystal mixture is carbon nanotubes.

The addition of these carbon structures alters the crystalline alignment of the liquid crystals and changes the optical properties. Just as some materials react to an electrical current, these doped liquid crystals react to light. The liquid crystal, when exposed to light, changes its axis of refraction.

"A basic problem with these materials is their rather slow buildup times, which are typically in the tens of seconds to minutes for low optical illumination intensity," the researchers reported in Applied Physics Letters. "With suitable choice of dopants and applied fields, . . . these films are on the supranonlinear scale. These values are a thousand times larger than those observed previously. Furthermore, the response times of these effects can be improved to the millisecond time scale."

One image processing application where this doped liquid crystal film can be used is in focusing optical telescopes. Using the film as the capture material for a holographic image of the starfield, the garbage created by optically viewing very distant and weak stars can be eliminated and a holographic view of the starfield in real-time provided.

"Right now the device that is used in the telescope application is very, very expensive, but this film costs only a few pennies," says Khoo. "It would cost a thousand times less."

These films can also be use to create real-time holographic movies and can also be used in low light situations as they are very sensitive to light.

"Another application would be to convert, in real time, an image captured in infra red, to a visible light image," the Penn State researcher notes.

Other potential uses include filling hollow fiber optic fibers with the liquid crystal to control light pulses in the fiber and create a tunable nonlinear photonic crystal fiber.

"At Cambridge, researchers are using the material to make a Dick Tracy type watch," says Khoo. "A watch that can process images and communications."

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>