Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New material breakthrough: Super-hard graphite cracks diamond

17.10.2003


It is hard to imagine that graphite, the soft "lead" of pencils, can be transformed into a form that competes in strength with its molecular cousin diamond. Using a diamond anvil to produce extreme pressures and the ultra-brilliant X-ray beams at the Advanced Photon Source in Illinois, scientists with the High-Pressure Collaborative Access Team (HPCAT)* have surmounted experimental obstacles to probe the changes that graphite undergoes to produce this unique, super-hard substance. The study is reported in the October 17, issue of Science.



"Researchers have speculated for years on the extreme conditions that might change the molecular structure of graphite into a super-hard form that rivals diamond," said Wendy Mao, the study’s lead author from the Carnegie Institution’s Geophysical Laboratory in Washington, D.C., and the University of Chicago. "This experiment is the first to determine quantitatively how the bonding in graphite changes under high-pressure conditions. Conventional methods limited our observations to surface studies of the material," she stated. "Now, with the super high-intensity X-rays of the Argonne facility and with our team’s technology to focus the entire beam to a small spot, we’ve been able to look at the material in the diamond-anvil cell while under high pressure. We’ve overcome the obstacles of the past," she concluded.

Graphite and diamond are both made of carbon. The geometric arrangement and spacing of the carbon atoms is what makes the materials differ in appearance and strength. The atoms in graphite are arranged in layers that are widely spaced. The atoms in diamond, on the other hand, are tightly linked producing a strongly bonded structure. The HPCAT scientists subjected graphite to pressures that are equivalent to 170,000 times the pressure at sea level ( 17 gigapascals). "We were able to see how the structure changed at the atomic level when the graphite was squeezed into the super-hard form," remarked co-author Dave Mao of Carnegie’s Geophysical Laboratory. "The graphite that resulted from our experiment was so hard that when we released the pressure we saw that it had actually cracked the diamond anvil."


The super-hard from of graphite opens the door to a myriad of applications in industry particularly as a structural component.



* HPCAT is made up of researchers from the Carnegie Institution’s Geophysical Laboratory, the High-Pressure Physics Group of the Lawrence Livermore National Laboratory, the High Pressure Science and Engineering Center of the University of Nevada, Las Vegas, and the University of Hawaii Institute of Geophysics and Planetology. Use of the HPCAT facility at Argonne National Laboratory for this work was funded by the Department of Energy, the National Nuclear Security Administration, the National Science Foundation, the Department of Defense, the W.M. Keck Foundation, and the Carnegie Institution of Washington.

The Carnegie Institution of Washington (www.CarnegieInstitution.org) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments in the U.S.: Plant Biology, Global Ecology, The Observatories, Embryology, the Department of Terrestrial Magnetism, and the Geophysical Laboratory.

Wendy Mao | EurekAlert!
Further information:
http://www.CarnegieInstitution.org

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>