Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microscopic cracks spoil the transparency of glass, nano-researchers find

13.10.2003


The cloudy look on cleaned glass is scattered light, not streaks of dirt



A fundamental discovery about the behavior of cooling glass could have a significant impact on the glass- and plastic-making industries, say researchers at Lehigh University.
Himanshu Jain, Diamond chair and professor of materials science and engineering at Lehigh, says the breakthrough was made possible by a combination of nanoscopic science and an old-fashioned kitchen recipe.

When molten glass is blown rapidly to make articles of desired shape, Jain’s group found, its outermost surface, measuring a few nanometers in thickness, sustains microscopic fractures when it comes into contact with air. One nanometer equals one one-billionth of a meter.



These fractures are microns or nanometers in width and thus too small to be seen with the unaided eye, says Jain. But when they are exposed to an aggressive solution, such as a dishwashing soap, the cracks etch out, spread and begin to dissolve faster than the rest of the glass, leaving behind a dirty look that can not be cleaned away.

In reality, says Jain, the dirty look is merely light that is scattered by the numerous microscopic cracks.

Jain’s group described their findings in an article titled "Inhomogeneous evolution of a glass surface via free, rapid expansion" in the Oct. 6, 2003, issue of Applied Physics Letters.

Previously, says Jain, scientists and glass-makers had assumed that under force molten glass expanded in a uniform manner and that finished glass was a chemically durable, homogeneous material.

Jain has spent more than two decades studying the unorganized arrangements and unpredictable movements of atoms in glass’s non-crystalline structure.

Several years ago, he was asked by Unilever to figure out why, after being washed in a dishwasher, some wineglasses acquire a lined, milky look that can not be removed by further cleanings.

To solve the puzzle, Jain, his graduate student Anju Sharma, and Unilever collaborator Joseph O. Carnali, turned the prevailing assumptions about the properties of glass on their head and hypothesized that the surface of molten glass was solid and thus prone to cracking.

"We had to come up with a hypothesis because, using the traditional assumption that the surface was behaving like a liquid, we could not understand everything about the corrosion of the glass," he said.

With help from his 12-year-old daughter, Isha, Jain designed a home experiment to test his hypothesis.

The Jains started their experiment with a cooking pot. Using an Internet recipe for making hard candy, known by scientists as sucrose glass, they boiled a mixture of water and sugar, which mimics the molecular behavior of the soda and silica that are the main ingredients of commercial glassware.

When the hot syrup reached the consistency of viscous glass, Jain and his daughter used an empty ballpoint pen to simulate the blowing of glass.

When they studied the microstructure of the sucrose glass surface in detail, the Jains found tiny cracks, indicating that the surface had expanded not in a uniform fashion, like a liquid would, but in a non-uniform manner, as a solid would.

Encouraged by this initial observation, the Lehigh researchers conducted more sophisticated experiments in laboratory, blowing real glass and characterizing its expanding surface with electron microscopy.

"No one had imagined that the top nanometer or two of the surface was a solid," Jain said. "Our lab experiments had proved our hypothesis. Only the top of the surface fractured; the rest of the glass remained very homogeneous."

One factor contributing to the formation of the tiny cracks on the nano-surface, says Jain, is the fact that there is a very high temperature gradient at the glass surface.

Jain conducted his experiments using sucrose glass and real glass, but he believes plastics will behave similarly, although to a lesser degree, as plastic products are formed at lower temperatures.

"This is a quality-control issue for manufacturers," he said. "For nano-researchers, the lack of homogeneity on the nano-scale could be a serious problem that would need to be resolved as nanotechnology enters the market place."

A second paper by Jain and his colleagues, which describes the effect of manufacturing-induced corrosion on wineglasses and other commercial glassware, is scheduled to be published next week by the Journal of the American Ceramics Society.

Kurt Pfitzer | EurekAlert!

More articles from Materials Sciences:

nachricht New Multiferroic Materials from Building Blocks
29.09.2016 | National Institute for Materials Science

nachricht Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”
29.09.2016 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!

30.09.2016 | Life Sciences

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>