Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics interconnections for extreme space environments

13.10.2003


If all goes as planned, two rovers named Spirit and Opportunity will explore the surface of Mars next year, gathering a wealth of geologic information and beaming the results back to Earth. However, the environment is so extreme that the rovers will be equipped with heaters to keep the electronic gear warm enough to operate properly over the Martian winter when temperatures can dip to -120 degrees C. Future space probes will involve even more extreme environments, with temperatures as high as 460 degrees Celsius (860 degrees Fahrenheit) on Venus and as low as -180 Celsius (-292 Fahrenheit) on Titan, the largest moon of Saturn.



George Harman, a world authority on materials for microelectronic interconnections and packaging at the National Institute of Standards and Technology (NIST), recently made a workshop presentation for National Aeronautics and Space Administration (NASA) engineers at the Jet Propulsion Laboratory on designing semiconductor device interconnections to withstand extreme space environments.

Harman recommended that spacebound microelectronics interconnections be made with corrosion resis-tant, highly stable metals, especially gold. He also suggested the use of some newer polymers that can withstand extreme temperatures but are not yet used in the space program. "Flip chips" are another interconnection approach, that, with proper metallurgy, may make sense in high-temperature planetary environments. Instead of using wire leads around the edges of a microchip to export electrical signals, flip chips normally use a pattern of ball-shaped solder contacts that are attached directly on the chip surface. Harman suggested that NASA consider using flip chips designed with gold contacts to produce spacecraft electronics that are both space-saving and heat resistant.


Phil Bulman | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>