Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Glass Can Replace Expensive Crystals in Some Lasers


...and bring high power to small packages

"Metal droplet levitated inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA’s microgravity materials science program."
Credit: NASA

"The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA’s Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility."
Credit: NASA

Researchers have developed a new family of glasses that will bring higher power to smaller packages in lasers and optical devices and provide a less-expensive alternative to many other optical glasses and crystals, like sapphire. Called REAl(tm) Glass (Rare-earth - Aluminum oxide), the materials are durable, provide a good host for atoms that improve laser performance, and may extend the range of wavelengths that a single laser can currently produce.

With support from the National Science Foundation (NSF), Containerless Research, Inc. (CRI), based in the Northwestern University Evanston Research Park in Illinois, recently developed the REAl(tm) Glass manufacturing process. NSF is now supporting the company to develop the glasses for applications in power lasers, surgical lasers, optical communications devices, infrared materials, and sensors that may detect explosives and toxins.

"NSF funded the technology at a stage when there were very few companies or venture capitalists that would have made the choice to invest," says Winslow Sargeant, the NSF officer who oversees CRI’s Small Business Innovation Research (SBIR) award. "We supported the REAl Glass research because we saw there was innovation there," adds Sargeant. "They are a great company with a good technology, so we provided seed money to establish the technology’s feasibility. Right now, we can say the feasibility is clear, and they’re one step closer to full-scale manufacturability," he says.

CRI originally developed the glasses with funding from NASA. The research used containerless processing techniques, including a specialized research facility-the Electrostatic Levitator-at the NASA Marshall Space Flight Center in Huntsville, Ala. With the NASA device, the researchers levitated the materials using static electricity and then heated the substances to extremely high temperatures. In that process, the materials were completely protected against contact with a surrounding container or other sources of contamination.

"The research that led to the development of REAl Glass concerned the nature and properties of ’fragile’ liquids, substances that are very sensitive to temperature and have a viscosity [or, resistance to flow] that can change rapidly when the temperature drops," says Richard Weber, the CRI principal investigator on the project.

REAl(tm) Glass, like many other glasses, is made from a supercooled liquid. This means that the liquid cooled quickly enough to prevent its atoms from organizing and forming a crystal structure. At lower temperatures, such as room temperature, the atoms are "fixed" in this jumbled, glassy state. In REAl(tm) Glass, the glass making process also provides a mechanism for incorporating rare-earth elements in a uniform way. This quality makes REAl Glass particularly attractive for laser applications.

After CRI scientists spent several years on fundamental research into fragile liquids, NSF provided funds to develop both patented glasses and proprietary manufacturing processes for combining the glass components in commercial quantities and at a much lower cost than for levitation melting. Using high temperature melting and forming operations, CRI is making REAl Glass in 10 mm thick rods and plates, establishing a basis for inexpensive, large scale production of sheet and rod products.

"The REAl(tm) Glass products are a new family of optical materials," says Weber, who adds that CRI is already meeting with businesses to talk about requirements for laser, infrared window, and other optical applications and supplying finished products or licensing the material for use.

"The REAl(tm) Glass technology combines properties of competing materials into one [material]," says NSF’s Sargeant. "With these glasses," he adds, "researchers can design smaller laser devices, because of the high power density that can be achieved, and can provide small, high-bandwidth devices for applications in the emerging fiber-to-the-home (FTTH) telecom market."

Because the glass can incorporate a variety of rare-earth elements into its structure, CRI can craft the glasses to yield specific properties, such as the ability to tune a laser across multiple light wavelengths. The ability to tune the light wavelength can have important implications for the lasers used in dental procedures and surgery, providing more control for operations involving skin shaping or cauterization.

The Air Force Office of Scientific Research is supporting CRI’s research into applications, including materials for infrared waveguides and sensors needed to identify chemical components. CRI is also continuing basic research on fragile oxide liquids, which they believe still offer much potential for generating new materials, and ultimately, optical devices.

Josh Chamot | NSF
Further information:

More articles from Materials Sciences:

nachricht The search for dark matter widens
21.03.2018 | American Institute of Physics

nachricht Scientists have a new way to gauge the growth of nanowires
19.03.2018 | DOE/Argonne National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>