Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Glass Can Replace Expensive Crystals in Some Lasers

08.10.2003


...and bring high power to small packages


"Metal droplet levitated inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA’s microgravity materials science program."
Credit: NASA


"The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA’s Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility."
Credit: NASA



Researchers have developed a new family of glasses that will bring higher power to smaller packages in lasers and optical devices and provide a less-expensive alternative to many other optical glasses and crystals, like sapphire. Called REAl(tm) Glass (Rare-earth - Aluminum oxide), the materials are durable, provide a good host for atoms that improve laser performance, and may extend the range of wavelengths that a single laser can currently produce.

With support from the National Science Foundation (NSF), Containerless Research, Inc. (CRI), based in the Northwestern University Evanston Research Park in Illinois, recently developed the REAl(tm) Glass manufacturing process. NSF is now supporting the company to develop the glasses for applications in power lasers, surgical lasers, optical communications devices, infrared materials, and sensors that may detect explosives and toxins.


"NSF funded the technology at a stage when there were very few companies or venture capitalists that would have made the choice to invest," says Winslow Sargeant, the NSF officer who oversees CRI’s Small Business Innovation Research (SBIR) award. "We supported the REAl Glass research because we saw there was innovation there," adds Sargeant. "They are a great company with a good technology, so we provided seed money to establish the technology’s feasibility. Right now, we can say the feasibility is clear, and they’re one step closer to full-scale manufacturability," he says.

CRI originally developed the glasses with funding from NASA. The research used containerless processing techniques, including a specialized research facility-the Electrostatic Levitator-at the NASA Marshall Space Flight Center in Huntsville, Ala. With the NASA device, the researchers levitated the materials using static electricity and then heated the substances to extremely high temperatures. In that process, the materials were completely protected against contact with a surrounding container or other sources of contamination.

"The research that led to the development of REAl Glass concerned the nature and properties of ’fragile’ liquids, substances that are very sensitive to temperature and have a viscosity [or, resistance to flow] that can change rapidly when the temperature drops," says Richard Weber, the CRI principal investigator on the project.

REAl(tm) Glass, like many other glasses, is made from a supercooled liquid. This means that the liquid cooled quickly enough to prevent its atoms from organizing and forming a crystal structure. At lower temperatures, such as room temperature, the atoms are "fixed" in this jumbled, glassy state. In REAl(tm) Glass, the glass making process also provides a mechanism for incorporating rare-earth elements in a uniform way. This quality makes REAl Glass particularly attractive for laser applications.

After CRI scientists spent several years on fundamental research into fragile liquids, NSF provided funds to develop both patented glasses and proprietary manufacturing processes for combining the glass components in commercial quantities and at a much lower cost than for levitation melting. Using high temperature melting and forming operations, CRI is making REAl Glass in 10 mm thick rods and plates, establishing a basis for inexpensive, large scale production of sheet and rod products.

"The REAl(tm) Glass products are a new family of optical materials," says Weber, who adds that CRI is already meeting with businesses to talk about requirements for laser, infrared window, and other optical applications and supplying finished products or licensing the material for use.

"The REAl(tm) Glass technology combines properties of competing materials into one [material]," says NSF’s Sargeant. "With these glasses," he adds, "researchers can design smaller laser devices, because of the high power density that can be achieved, and can provide small, high-bandwidth devices for applications in the emerging fiber-to-the-home (FTTH) telecom market."

Because the glass can incorporate a variety of rare-earth elements into its structure, CRI can craft the glasses to yield specific properties, such as the ability to tune a laser across multiple light wavelengths. The ability to tune the light wavelength can have important implications for the lasers used in dental procedures and surgery, providing more control for operations involving skin shaping or cauterization.

The Air Force Office of Scientific Research is supporting CRI’s research into applications, including materials for infrared waveguides and sensors needed to identify chemical components. CRI is also continuing basic research on fragile oxide liquids, which they believe still offer much potential for generating new materials, and ultimately, optical devices.

Josh Chamot | NSF
Further information:
http://www.containerless.com
http://www.nasa.gov
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>