Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Glass Can Replace Expensive Crystals in Some Lasers

08.10.2003


...and bring high power to small packages


"Metal droplet levitated inside the Electrostatic Levitator (ESL). The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA’s microgravity materials science program."
Credit: NASA


"The Electrostatic Levitator (ESL) Facility established at Marshall Space Flight Center (MSFC) supports NASA’s Microgravity Materials Science Research Program. NASA materials science investigations include ground-based, flight definition and flight projects. Flight definition projects, with demanding science concept review schedules, receive highest priority for scheduling experiment time in the Electrostatic Levitator (ESL) Facility."
Credit: NASA



Researchers have developed a new family of glasses that will bring higher power to smaller packages in lasers and optical devices and provide a less-expensive alternative to many other optical glasses and crystals, like sapphire. Called REAl(tm) Glass (Rare-earth - Aluminum oxide), the materials are durable, provide a good host for atoms that improve laser performance, and may extend the range of wavelengths that a single laser can currently produce.

With support from the National Science Foundation (NSF), Containerless Research, Inc. (CRI), based in the Northwestern University Evanston Research Park in Illinois, recently developed the REAl(tm) Glass manufacturing process. NSF is now supporting the company to develop the glasses for applications in power lasers, surgical lasers, optical communications devices, infrared materials, and sensors that may detect explosives and toxins.


"NSF funded the technology at a stage when there were very few companies or venture capitalists that would have made the choice to invest," says Winslow Sargeant, the NSF officer who oversees CRI’s Small Business Innovation Research (SBIR) award. "We supported the REAl Glass research because we saw there was innovation there," adds Sargeant. "They are a great company with a good technology, so we provided seed money to establish the technology’s feasibility. Right now, we can say the feasibility is clear, and they’re one step closer to full-scale manufacturability," he says.

CRI originally developed the glasses with funding from NASA. The research used containerless processing techniques, including a specialized research facility-the Electrostatic Levitator-at the NASA Marshall Space Flight Center in Huntsville, Ala. With the NASA device, the researchers levitated the materials using static electricity and then heated the substances to extremely high temperatures. In that process, the materials were completely protected against contact with a surrounding container or other sources of contamination.

"The research that led to the development of REAl Glass concerned the nature and properties of ’fragile’ liquids, substances that are very sensitive to temperature and have a viscosity [or, resistance to flow] that can change rapidly when the temperature drops," says Richard Weber, the CRI principal investigator on the project.

REAl(tm) Glass, like many other glasses, is made from a supercooled liquid. This means that the liquid cooled quickly enough to prevent its atoms from organizing and forming a crystal structure. At lower temperatures, such as room temperature, the atoms are "fixed" in this jumbled, glassy state. In REAl(tm) Glass, the glass making process also provides a mechanism for incorporating rare-earth elements in a uniform way. This quality makes REAl Glass particularly attractive for laser applications.

After CRI scientists spent several years on fundamental research into fragile liquids, NSF provided funds to develop both patented glasses and proprietary manufacturing processes for combining the glass components in commercial quantities and at a much lower cost than for levitation melting. Using high temperature melting and forming operations, CRI is making REAl Glass in 10 mm thick rods and plates, establishing a basis for inexpensive, large scale production of sheet and rod products.

"The REAl(tm) Glass products are a new family of optical materials," says Weber, who adds that CRI is already meeting with businesses to talk about requirements for laser, infrared window, and other optical applications and supplying finished products or licensing the material for use.

"The REAl(tm) Glass technology combines properties of competing materials into one [material]," says NSF’s Sargeant. "With these glasses," he adds, "researchers can design smaller laser devices, because of the high power density that can be achieved, and can provide small, high-bandwidth devices for applications in the emerging fiber-to-the-home (FTTH) telecom market."

Because the glass can incorporate a variety of rare-earth elements into its structure, CRI can craft the glasses to yield specific properties, such as the ability to tune a laser across multiple light wavelengths. The ability to tune the light wavelength can have important implications for the lasers used in dental procedures and surgery, providing more control for operations involving skin shaping or cauterization.

The Air Force Office of Scientific Research is supporting CRI’s research into applications, including materials for infrared waveguides and sensors needed to identify chemical components. CRI is also continuing basic research on fragile oxide liquids, which they believe still offer much potential for generating new materials, and ultimately, optical devices.

Josh Chamot | NSF
Further information:
http://www.containerless.com
http://www.nasa.gov
http://www.nsf.gov

More articles from Materials Sciences:

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

nachricht When Proteins Shake Hands
19.02.2018 | Friedrich-Schiller-Universität Jena

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>