Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Surface Can Find Different Twists on a Molecular Theme

02.10.2003


The copper-colored images in the above figure are x-ray pole figures of copper-oxide (CuO) films that researchers at the University of Missouri-Rolla have deposited onto a gold surface. The grey background is a scanning electron microscope image of one of the CuO films. The researchers created the pole figures—which represent data, not images of molecules—using an advanced measuring instrument called an x-ray diffractometer. Scientists use x-ray pole figures to determine the atomic structure and orientation of crystalline materials. As with a person’s right and left hands, the CuO films (and their pole figures) cannot be superimposed on one another. This concept is called chirality, and is a characteristic of many biologically-important molecules. The CuO films have been shown to distinguish between the left- and right-handed versions of molecules, an important trait researchers can use to create new chemical sensors and catalysts.
Credit: Jay Switzer and Eric Bohannan, University of Missouri-Rolla; National Science Foundation


Principal investigator Jay Switzer of the University of Missouri-Rolla (second from left) with collaborators Eric Bohannan (on right) and Shuji Nakanishi (far right) and student Hiten Kothari (far left). The team is standing in front of the x-ray diffractometer equipment purchased with the NSF award.
Credit: Photo courtesy of Bob Phelan/Photomasters

Researchers have created a new process to produce materials that can sift through similar, molecular brethren and latch onto chemicals that differ from each other in only their mirrored images.

If it proves effective in large-scale experiments, the stable, relatively simple catalyst could impact the $100 billion pharmaceutical industry by helping sort biologically potent chemicals from related, yet less useful or even toxic, compatriots.

Jay Switzer and colleagues at the University of Missouri at Rolla announce their discovery in the October 2, 2003, issue of the journal Nature. The research was funded primarily by the Division of Chemistry and the Division of Material Research at the National Science Foundation (NSF), the independent federal agency that supports research and education across all fields of science and engineering.

The new material, a thin film of copper oxide on a layer of gold, has an inherent "handedness." Just as human hands come in a left and right-handed variety, so do some molecules. "It’s just like the difference between shaking hands between a right- or left-handed person," said NSF program officer and chemistry expert Mike Clarke. "The handclasp is much easier if it’s right-right or left-left, and harder if it’s right-left or left-right." The handedness property, called "chirality," is fundamentally related to how the molecule reacts with other substances.

Approximately one-third of all drugs are chiral, says Switzer, and the top-10 list for these products includes such familiar brand names as Lipitor, Zocor, Paxil, Zoloft, and Nexium-all of which yield sales of over $1 billion a year.

Currently, most industries make bulk quantities of chiral molecules by mixing handed molecules and other chemicals in a solution. "The ’hands’ gather atoms, assembling chiral, molecular ’gloves,’" said chemist Katherine Covert, one of the NSF program officers who oversees funding of Switzer’s research.

"But, separating the useful ’gloves’ from the chemicals that assembled them can be a difficult process," she added.

Switzer and his colleagues have created a material that serves as a bank of "hands," a solid structure on which reactions can occur and from which researchers can more easily separate desirable chemicals.

To do this, the group used tartrate, a common substance that often crystallizes on the bottom of wine corks. In 1848, when Louis Pasteur was 26, he used tweezers to separate right- and left-handed forms of sodium ammonium tartrate under a microscope.

"The crystals have a different shape," said Switzer. "When Pasteur dissolved the crystals in water, one set rotated polarized light to the right, and the other form rotated it to the left. This experiment is usually cited as the discovery of chirality in molecules," he added.

Tartrate was therefore the first molecule ever isolated in right handed and left-handed forms, which chemists now refer to as the R (from the Latin rectus) and S (from the Latin sinister) forms.

"We’ve made a material that is entirely chiral, not just the surface," said Switzer. "In earlier experiments, you would modify a surface with a chiral modifying agent, and if the agent washes off, the surface is no longer effective. In our new research, the film itself is chiral-the effectiveness remains even after many chemical reactions," he added.

To create the new catalyst, the researchers immersed gold in a liquid containing copper and the handed chemical tartrate, while applying an electric current to the system. The electricity caused copper oxide to bond to the gold. The technique is much like the simple electroplating used to produce the shiny chrome on automobiles.

The gold atoms were highly organized in a crystal structure, but the structure was symmetrical and did not affect the final handedness of the material. Instead, the chiral structure of the tartrate molecules caused the copper oxide to bind to the gold layer-by-layer and in an oriented fashion, creating a handed film.

Once the copper oxide film forms, the copper and oxygen atoms are tightly attached and exist as a single material. In initial tests, the researchers have shown the material can differentiate between chiral tartrate without breaking down or being permanently altered. Pending tests will apply the same technique to amino acids and sugars, such as glucose.

Now, Switzer and his colleagues hope to use their process to create new catalysts and separate different chemicals. In addition to numerous industry uses, the researchers hope similar catalysts may eventually be modified to create sensors for security applications.

Switzer is supported by NSF through both the Division of Chemistry and the Division of Materials Research.

Trademarks for prescription drug names that appear in this press release - Lipitor, Zocor, Paxil, Zoloft, and Nexium - are the trademarks of their respective owners.

Josh Chamot | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa

More articles from Materials Sciences:

nachricht Researchers printed graphene-like materials with inkjet
18.08.2017 | Aalto University

nachricht Superconductivity research reveals potential new state of matter
17.08.2017 | DOE/Los Alamos National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>