Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ductile intermetallic compounds discovered

16.09.2003


Ames Laboratory researchers identify non-brittle intermetallics



To material scientists the phrase "ductile intermetallic compounds" has long been considered an oxymoron. Although these compounds possess chemical, physical, electrical, magnetic, and mechanical properties that are often superior to ordinary metals, their potential has gone untapped because they are typically quite brittle at room temperature. Until now.

Researchers at the U.S. Department of Energy’s Ames Laboratory at Iowa State University have discovered a number of rare earth intermetallic compounds that are ductile at room temperature. The discovery, announced in an article in the September issue of the journal Nature Materials, 2, PP 587-590, has the potential to make these promising materials more useful.


"Over the last several decades, tens of thousands of intermetallics have been identified," Ames Laboratory materials scientist Alan Russell said. "But in order to make them even somewhat ductile, a whole menu of ’tricks’ have been developed, such as testing them at high temperatures, or in zero-humidity, or shifting them off stoichiometry. The materials we’re studying are the first ones that don’t need these contrivances."

So far, the Ames Laboratory research team, led by senior metallurgist Karl Gschneidner, Jr. and Russell, has identified 12 fully ordered, completely stoichiometric intermetallic compounds. These compounds are formed by combining a rare earth element with certain main group or transition metals . The resulting binary compounds have a B2 crystal structure, like that found in cesium-chloride (CsCl), in which an atom of one element is surrounded by a cubic arrangement of eight atoms of the other element.

The study has focused on yttrium-silver (YAg), yttrium-copper (YCu), and dysprosium-copper (DyCu), but a preliminary examination of other rare earth compounds showed that cerium-silver (CeAg), erbium-silver (ErAg), erbium-gold (ErAu), erbium-copper (ErCu), erbium-iridium (ErIr), holmium-copper (HoCu), neodymium-silver (NdAg), yttrium-indium (YIn), and yttrium-rhodium (YRh) are also ductile.

Samples were prepared by arc-melting high-purity elements to form compounds with a 50-50 atomic mix of Y or Dy and Ag or Cu. X-ray diffraction, optical metallography, and electron microscopy confirmed the specimens were single-phase with the fully ordered B2 structure.

In tensile testing, these materials showed remarkable ductility. The YAg stretched nearly 25 percent before it fractured, compared to 2 percent or less for many other intermetallics. In other measurements, the materials showed ASTM fracture toughness values (KIC) comparable with commercial aircraft aluminum alloys.

Why these materials deform while other intermetallics shatter isn’t quite clear, but theoretical calculations by Ames Lab physicist James Morris show that the ductile materials possess much lower unstable stacking-fault energies. Because these energies are lower in the ductile materials, it is easier for them to plastically deform instead of fracturing at the grain boundaries.

"There are particular planes (within the B2 structure) that tend to slip most easily," Russell said, "and particular directions on those planes where deformation slip occurs most easily. However, our transmission electron micrographs identify slippage in more than one direction, so there are probably other factors at work as well."

While there may be applications for these ductile materials because of their other characteristics like high-temperature strength or corrosion resistance, Gschneidner and Russell hope that studying these materials will actually lead to a better understanding of the brittle intermetallics.

"The most exciting thing about this is finding a material that breaks all the rules. It provides a great opportunity to figure out fundamentally why the others are brittle," Russell said. "To see one that’s the exception gives you a new perspective on all the others."

Gschneidner added, "The exceptions are the ones you want to concentrate on because they can tell you a heck of a lot more than all the ones that obey the rules. It can steer you in a whole new direction."



The research is supported through funding from the DOE’s Office of Basic Energy Science. The Ames Laboratory is operated for the Department of Energy by ISU. The Laboratory conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at www.ameslab.gov.

Note to editors: For images showing the material, tensile test results, or the scientists, please contact Kerry Gibson, kgibson@ameslab.gov.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov/
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>