Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ductile intermetallic compounds discovered

16.09.2003


Ames Laboratory researchers identify non-brittle intermetallics



To material scientists the phrase "ductile intermetallic compounds" has long been considered an oxymoron. Although these compounds possess chemical, physical, electrical, magnetic, and mechanical properties that are often superior to ordinary metals, their potential has gone untapped because they are typically quite brittle at room temperature. Until now.

Researchers at the U.S. Department of Energy’s Ames Laboratory at Iowa State University have discovered a number of rare earth intermetallic compounds that are ductile at room temperature. The discovery, announced in an article in the September issue of the journal Nature Materials, 2, PP 587-590, has the potential to make these promising materials more useful.


"Over the last several decades, tens of thousands of intermetallics have been identified," Ames Laboratory materials scientist Alan Russell said. "But in order to make them even somewhat ductile, a whole menu of ’tricks’ have been developed, such as testing them at high temperatures, or in zero-humidity, or shifting them off stoichiometry. The materials we’re studying are the first ones that don’t need these contrivances."

So far, the Ames Laboratory research team, led by senior metallurgist Karl Gschneidner, Jr. and Russell, has identified 12 fully ordered, completely stoichiometric intermetallic compounds. These compounds are formed by combining a rare earth element with certain main group or transition metals . The resulting binary compounds have a B2 crystal structure, like that found in cesium-chloride (CsCl), in which an atom of one element is surrounded by a cubic arrangement of eight atoms of the other element.

The study has focused on yttrium-silver (YAg), yttrium-copper (YCu), and dysprosium-copper (DyCu), but a preliminary examination of other rare earth compounds showed that cerium-silver (CeAg), erbium-silver (ErAg), erbium-gold (ErAu), erbium-copper (ErCu), erbium-iridium (ErIr), holmium-copper (HoCu), neodymium-silver (NdAg), yttrium-indium (YIn), and yttrium-rhodium (YRh) are also ductile.

Samples were prepared by arc-melting high-purity elements to form compounds with a 50-50 atomic mix of Y or Dy and Ag or Cu. X-ray diffraction, optical metallography, and electron microscopy confirmed the specimens were single-phase with the fully ordered B2 structure.

In tensile testing, these materials showed remarkable ductility. The YAg stretched nearly 25 percent before it fractured, compared to 2 percent or less for many other intermetallics. In other measurements, the materials showed ASTM fracture toughness values (KIC) comparable with commercial aircraft aluminum alloys.

Why these materials deform while other intermetallics shatter isn’t quite clear, but theoretical calculations by Ames Lab physicist James Morris show that the ductile materials possess much lower unstable stacking-fault energies. Because these energies are lower in the ductile materials, it is easier for them to plastically deform instead of fracturing at the grain boundaries.

"There are particular planes (within the B2 structure) that tend to slip most easily," Russell said, "and particular directions on those planes where deformation slip occurs most easily. However, our transmission electron micrographs identify slippage in more than one direction, so there are probably other factors at work as well."

While there may be applications for these ductile materials because of their other characteristics like high-temperature strength or corrosion resistance, Gschneidner and Russell hope that studying these materials will actually lead to a better understanding of the brittle intermetallics.

"The most exciting thing about this is finding a material that breaks all the rules. It provides a great opportunity to figure out fundamentally why the others are brittle," Russell said. "To see one that’s the exception gives you a new perspective on all the others."

Gschneidner added, "The exceptions are the ones you want to concentrate on because they can tell you a heck of a lot more than all the ones that obey the rules. It can steer you in a whole new direction."



The research is supported through funding from the DOE’s Office of Basic Energy Science. The Ames Laboratory is operated for the Department of Energy by ISU. The Laboratory conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at www.ameslab.gov.

Note to editors: For images showing the material, tensile test results, or the scientists, please contact Kerry Gibson, kgibson@ameslab.gov.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov/
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D
30.09.2016 | Oak Ridge National Laboratory

nachricht New Multiferroic Materials from Building Blocks
29.09.2016 | National Institute for Materials Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>