Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ductile intermetallic compounds discovered

16.09.2003


Ames Laboratory researchers identify non-brittle intermetallics



To material scientists the phrase "ductile intermetallic compounds" has long been considered an oxymoron. Although these compounds possess chemical, physical, electrical, magnetic, and mechanical properties that are often superior to ordinary metals, their potential has gone untapped because they are typically quite brittle at room temperature. Until now.

Researchers at the U.S. Department of Energy’s Ames Laboratory at Iowa State University have discovered a number of rare earth intermetallic compounds that are ductile at room temperature. The discovery, announced in an article in the September issue of the journal Nature Materials, 2, PP 587-590, has the potential to make these promising materials more useful.


"Over the last several decades, tens of thousands of intermetallics have been identified," Ames Laboratory materials scientist Alan Russell said. "But in order to make them even somewhat ductile, a whole menu of ’tricks’ have been developed, such as testing them at high temperatures, or in zero-humidity, or shifting them off stoichiometry. The materials we’re studying are the first ones that don’t need these contrivances."

So far, the Ames Laboratory research team, led by senior metallurgist Karl Gschneidner, Jr. and Russell, has identified 12 fully ordered, completely stoichiometric intermetallic compounds. These compounds are formed by combining a rare earth element with certain main group or transition metals . The resulting binary compounds have a B2 crystal structure, like that found in cesium-chloride (CsCl), in which an atom of one element is surrounded by a cubic arrangement of eight atoms of the other element.

The study has focused on yttrium-silver (YAg), yttrium-copper (YCu), and dysprosium-copper (DyCu), but a preliminary examination of other rare earth compounds showed that cerium-silver (CeAg), erbium-silver (ErAg), erbium-gold (ErAu), erbium-copper (ErCu), erbium-iridium (ErIr), holmium-copper (HoCu), neodymium-silver (NdAg), yttrium-indium (YIn), and yttrium-rhodium (YRh) are also ductile.

Samples were prepared by arc-melting high-purity elements to form compounds with a 50-50 atomic mix of Y or Dy and Ag or Cu. X-ray diffraction, optical metallography, and electron microscopy confirmed the specimens were single-phase with the fully ordered B2 structure.

In tensile testing, these materials showed remarkable ductility. The YAg stretched nearly 25 percent before it fractured, compared to 2 percent or less for many other intermetallics. In other measurements, the materials showed ASTM fracture toughness values (KIC) comparable with commercial aircraft aluminum alloys.

Why these materials deform while other intermetallics shatter isn’t quite clear, but theoretical calculations by Ames Lab physicist James Morris show that the ductile materials possess much lower unstable stacking-fault energies. Because these energies are lower in the ductile materials, it is easier for them to plastically deform instead of fracturing at the grain boundaries.

"There are particular planes (within the B2 structure) that tend to slip most easily," Russell said, "and particular directions on those planes where deformation slip occurs most easily. However, our transmission electron micrographs identify slippage in more than one direction, so there are probably other factors at work as well."

While there may be applications for these ductile materials because of their other characteristics like high-temperature strength or corrosion resistance, Gschneidner and Russell hope that studying these materials will actually lead to a better understanding of the brittle intermetallics.

"The most exciting thing about this is finding a material that breaks all the rules. It provides a great opportunity to figure out fundamentally why the others are brittle," Russell said. "To see one that’s the exception gives you a new perspective on all the others."

Gschneidner added, "The exceptions are the ones you want to concentrate on because they can tell you a heck of a lot more than all the ones that obey the rules. It can steer you in a whole new direction."



The research is supported through funding from the DOE’s Office of Basic Energy Science. The Ames Laboratory is operated for the Department of Energy by ISU. The Laboratory conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials. More information about the Ames Laboratory can be found at www.ameslab.gov.

Note to editors: For images showing the material, tensile test results, or the scientists, please contact Kerry Gibson, kgibson@ameslab.gov.

Kerry Gibson | EurekAlert!
Further information:
http://www.external.ameslab.gov/
http://www.ameslab.gov

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>