Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Buckyball’ Material Brings Light into Line

15.09.2003


Using molecules resembling 60-sided soccer balls, a joint team of researchers from the University of Toronto and Carleton University has created a new material for processing information using light.



Led by U of T electrical and computer engineering professor Ted Sargent and Carleton University chemistry professor Wayne Wang, the team developed a material that combines microscopic spherical particles known as “buckyballs” with polyurethane, the polymer used as a coating on cars and furniture. The buckyballs, given the chemical notation C60, are clusters of 60 carbon atoms resembling soccer balls that are only a few nanometres in diameter. (A nanometre equals a billionth of a metre.)

When the mixture of polyurethane and buckyballs is used as a thin film on a flat surface, light particles travelling though the material pick up each others’ patterns. These materials have the capacity to make the delivery and processing of information in fibre-optic communications more efficient.


“In our high-optical-quality films, light interacts 10-to-100 times more strongly with itself, for all wavelengths used in optical fibre communications, than in previously reported C60-based materials,” says Sargent, a professor at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “We’ve also shown for the first time that we can meet commercial engineering requirements: the films perform well at 1550 nanometres, the wavelength used to communicate information over long distances.”

Light—made up of particles called photons—is widely used in fibre-optic networks to communicate trillions of bits of information each second over long distances. At the moment, these fast and free-flowing signals are difficult to harness. The new material is described in a study in the Sept. 15 issue of Applied Physics Letters.

“The key to making this powerful signal-processing material was to master the chemistry of linking together the buckyballs and the polymer,” says Wang, Canada Research Chair in Emerging Organic Materials at Carleton University in Ottawa.

According to Sargent, the Nortel Networks-Canada Research Chair in Emerging Technologies, “this work proves that ‘designer molecules’ synthesized using nanotechnology can have powerful implications for future generations of computing and communications networks.”

The research was supported by the Ontario Research and Development Challenge Fund, Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs Foundation, the Canada Foundation for Innovation and the Ontario Innovation Trust.


CONTACT:

Ted Sargent
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca





Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Materials Sciences:

nachricht Scientists announce the quest for high-index materials
24.07.2017 | Moscow Institute of Physics and Technology

nachricht ADIR Project: Lasers Recover Valuable Materials
24.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>