Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Buckyball’ Material Brings Light into Line

15.09.2003


Using molecules resembling 60-sided soccer balls, a joint team of researchers from the University of Toronto and Carleton University has created a new material for processing information using light.



Led by U of T electrical and computer engineering professor Ted Sargent and Carleton University chemistry professor Wayne Wang, the team developed a material that combines microscopic spherical particles known as “buckyballs” with polyurethane, the polymer used as a coating on cars and furniture. The buckyballs, given the chemical notation C60, are clusters of 60 carbon atoms resembling soccer balls that are only a few nanometres in diameter. (A nanometre equals a billionth of a metre.)

When the mixture of polyurethane and buckyballs is used as a thin film on a flat surface, light particles travelling though the material pick up each others’ patterns. These materials have the capacity to make the delivery and processing of information in fibre-optic communications more efficient.


“In our high-optical-quality films, light interacts 10-to-100 times more strongly with itself, for all wavelengths used in optical fibre communications, than in previously reported C60-based materials,” says Sargent, a professor at U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “We’ve also shown for the first time that we can meet commercial engineering requirements: the films perform well at 1550 nanometres, the wavelength used to communicate information over long distances.”

Light—made up of particles called photons—is widely used in fibre-optic networks to communicate trillions of bits of information each second over long distances. At the moment, these fast and free-flowing signals are difficult to harness. The new material is described in a study in the Sept. 15 issue of Applied Physics Letters.

“The key to making this powerful signal-processing material was to master the chemistry of linking together the buckyballs and the polymer,” says Wang, Canada Research Chair in Emerging Organic Materials at Carleton University in Ottawa.

According to Sargent, the Nortel Networks-Canada Research Chair in Emerging Technologies, “this work proves that ‘designer molecules’ synthesized using nanotechnology can have powerful implications for future generations of computing and communications networks.”

The research was supported by the Ontario Research and Development Challenge Fund, Nortel Networks, the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs Foundation, the Canada Foundation for Innovation and the Ontario Innovation Trust.


CONTACT:

Ted Sargent
Edward S. Rogers Sr. Department of Electrical and Computer Engineering
416-946-5051
ted.sargent@utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca





Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>