Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing plastic circuits stamps patterns in place

10.09.2003


When Benjamin in "The Graduate" was told to go into plastics, computers were in their infancy and silicon technology ruled. Now, conducting organic polymers are infiltrating the electronics sphere and the watchword is once again plastics, according to Penn State researchers.



"For plastic circuits we cannot use the old processing," says Dr. Qing Wang, assistant professor of materials science and engineering. "Photolithography and silicon technologies require harsh environments and plastics cannot hold up to them."

Wang, working with Ziqi Liang and Kun Li, graduate students in materials science and engineering, are looking into novel processing methods for production of organic conducting polymer circuits. One method that is low cost, easy to do, fast and adaptable to large areas and non-flat surfaces, is micro contact printing.


"We use conducting polymers that are functionalized," Wang told attendees today (Sept. 9) at the annual meeting of the American Chemical Society in New York. "They have functional groups attached that allow them to be soluble and to attach to the surface." The researchers used poly (p-phenylene vinylene), PPV, which was modified by adding alkyoxy side chains and amino end groups. Altering the polymer allows it to dissolve in a variety of organic solvents. The amines act as reaction points where the polymer can attach to another chemical.

Attachment is important as most polymers are slippery and do not want to adhere to surfaces. In conventional ink printing, ink is held onto the paper by surface interactions, but not by chemical reactions. When printing a plastic electronic device, surface interactions are not strong enough to hold the polymer "ink" onto the surface.

Wang used a gold substrate onto which an organic acid, 16-mercaptohexadecanoic acid, was placed in a self-assembled monolayer. This single layer of molecules of MHA provides specific chemical groups to which the amino end groups of the polymer can attach.

In conventional printing, ink is placed on the plate and then the ink and paper are brought together for a very short time during which the wet ink is transferred to the paper. When printing polymers on organic acid coated gold, the process is different. The researchers used a pliable stamp of the submicron pattern they wish to transfer. They then applied the polymer "ink" to the stamp surface and dried it. The stamp and the substrate are held in contact for 30 minutes while the polymer transfers to the substrate.

Because the stamp is pliable, this printing method is applicable to curved surfaces. A wide variety of opto-electric devices are possible, including light-emitting diodes, field effect transistors, lasers, solar cells and chemical and biological sensors.

Wang has investigated the resulting patterns using a variety of macroscopic techniques to ensure that the pattern created on the surface is continuous and usable. Micro contact printing does create patterns with some defects, but the researchers believe that the resultant product is usable.

"Micro-printed patterns of conducting polymer need to be used in applications where some defects can be tolerated," says Wang.

"Although we do optimize the printed pattern as much as possible."

The Commonwealth of Pennsylvania’s Lehigh/Penn State Center for Optical Technologies supported this work.

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>