Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing plastic circuits stamps patterns in place

10.09.2003


When Benjamin in "The Graduate" was told to go into plastics, computers were in their infancy and silicon technology ruled. Now, conducting organic polymers are infiltrating the electronics sphere and the watchword is once again plastics, according to Penn State researchers.



"For plastic circuits we cannot use the old processing," says Dr. Qing Wang, assistant professor of materials science and engineering. "Photolithography and silicon technologies require harsh environments and plastics cannot hold up to them."

Wang, working with Ziqi Liang and Kun Li, graduate students in materials science and engineering, are looking into novel processing methods for production of organic conducting polymer circuits. One method that is low cost, easy to do, fast and adaptable to large areas and non-flat surfaces, is micro contact printing.


"We use conducting polymers that are functionalized," Wang told attendees today (Sept. 9) at the annual meeting of the American Chemical Society in New York. "They have functional groups attached that allow them to be soluble and to attach to the surface." The researchers used poly (p-phenylene vinylene), PPV, which was modified by adding alkyoxy side chains and amino end groups. Altering the polymer allows it to dissolve in a variety of organic solvents. The amines act as reaction points where the polymer can attach to another chemical.

Attachment is important as most polymers are slippery and do not want to adhere to surfaces. In conventional ink printing, ink is held onto the paper by surface interactions, but not by chemical reactions. When printing a plastic electronic device, surface interactions are not strong enough to hold the polymer "ink" onto the surface.

Wang used a gold substrate onto which an organic acid, 16-mercaptohexadecanoic acid, was placed in a self-assembled monolayer. This single layer of molecules of MHA provides specific chemical groups to which the amino end groups of the polymer can attach.

In conventional printing, ink is placed on the plate and then the ink and paper are brought together for a very short time during which the wet ink is transferred to the paper. When printing polymers on organic acid coated gold, the process is different. The researchers used a pliable stamp of the submicron pattern they wish to transfer. They then applied the polymer "ink" to the stamp surface and dried it. The stamp and the substrate are held in contact for 30 minutes while the polymer transfers to the substrate.

Because the stamp is pliable, this printing method is applicable to curved surfaces. A wide variety of opto-electric devices are possible, including light-emitting diodes, field effect transistors, lasers, solar cells and chemical and biological sensors.

Wang has investigated the resulting patterns using a variety of macroscopic techniques to ensure that the pattern created on the surface is continuous and usable. Micro contact printing does create patterns with some defects, but the researchers believe that the resultant product is usable.

"Micro-printed patterns of conducting polymer need to be used in applications where some defects can be tolerated," says Wang.

"Although we do optimize the printed pattern as much as possible."

The Commonwealth of Pennsylvania’s Lehigh/Penn State Center for Optical Technologies supported this work.

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>