Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Printing plastic circuits stamps patterns in place

10.09.2003


When Benjamin in "The Graduate" was told to go into plastics, computers were in their infancy and silicon technology ruled. Now, conducting organic polymers are infiltrating the electronics sphere and the watchword is once again plastics, according to Penn State researchers.



"For plastic circuits we cannot use the old processing," says Dr. Qing Wang, assistant professor of materials science and engineering. "Photolithography and silicon technologies require harsh environments and plastics cannot hold up to them."

Wang, working with Ziqi Liang and Kun Li, graduate students in materials science and engineering, are looking into novel processing methods for production of organic conducting polymer circuits. One method that is low cost, easy to do, fast and adaptable to large areas and non-flat surfaces, is micro contact printing.


"We use conducting polymers that are functionalized," Wang told attendees today (Sept. 9) at the annual meeting of the American Chemical Society in New York. "They have functional groups attached that allow them to be soluble and to attach to the surface." The researchers used poly (p-phenylene vinylene), PPV, which was modified by adding alkyoxy side chains and amino end groups. Altering the polymer allows it to dissolve in a variety of organic solvents. The amines act as reaction points where the polymer can attach to another chemical.

Attachment is important as most polymers are slippery and do not want to adhere to surfaces. In conventional ink printing, ink is held onto the paper by surface interactions, but not by chemical reactions. When printing a plastic electronic device, surface interactions are not strong enough to hold the polymer "ink" onto the surface.

Wang used a gold substrate onto which an organic acid, 16-mercaptohexadecanoic acid, was placed in a self-assembled monolayer. This single layer of molecules of MHA provides specific chemical groups to which the amino end groups of the polymer can attach.

In conventional printing, ink is placed on the plate and then the ink and paper are brought together for a very short time during which the wet ink is transferred to the paper. When printing polymers on organic acid coated gold, the process is different. The researchers used a pliable stamp of the submicron pattern they wish to transfer. They then applied the polymer "ink" to the stamp surface and dried it. The stamp and the substrate are held in contact for 30 minutes while the polymer transfers to the substrate.

Because the stamp is pliable, this printing method is applicable to curved surfaces. A wide variety of opto-electric devices are possible, including light-emitting diodes, field effect transistors, lasers, solar cells and chemical and biological sensors.

Wang has investigated the resulting patterns using a variety of macroscopic techniques to ensure that the pattern created on the surface is continuous and usable. Micro contact printing does create patterns with some defects, but the researchers believe that the resultant product is usable.

"Micro-printed patterns of conducting polymer need to be used in applications where some defects can be tolerated," says Wang.

"Although we do optimize the printed pattern as much as possible."

The Commonwealth of Pennsylvania’s Lehigh/Penn State Center for Optical Technologies supported this work.

A’ndrea Elyse Messer | Penn State
Further information:
http://www.psu.edu/

More articles from Materials Sciences:

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

nachricht Flexible proximity sensor creates smart surfaces
25.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>