Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Foams as Charge Carriers

04.08.2003


Scanning electron microscope picture of a ferroelectretic foam, together with a graphical representation of the charging states in the pores.


A research team in Austria has been unravelling the secrets of the charging of plastic foams. Its findings open the way for the development of flat microphones and loudspeakers, as well as "smart" surfaces that could be used as floor coverings, among other things. The interest in the success of the group´s work - which was co-funded by the Austrian Science Fund (FWF) - has resulted in the integration of the project in a European interdisciplinary research network.

During a thunder storm the electrical tension between the earth and the air is discharged by the lightning and hence lowered. In non-polar polymer foams a comparable process results in the precise opposite - an increase in the electrical charge. First, an electric discharge is induced in the microscopic voids (pores) in foamed plastics by applying an external voltage. The propagation of the discharge is then inhibited by the insulating properties of the polymer foam, resulting in charging of the pore walls. As the non-polar material is non-conductive, the charge is stored there. A team under Prof. Siegfried Bauer at the Johannes Kepler University Linz Institute for Experimental Physics has succeeded in proving the existence of this phenomenon. In so doing it has challenged established scientific doctrine which holds that such states can only exist in polar materials.

Pores with potential



The opposing positive and negative poles in the pores of the foam create an electrical potential. If the charged polymers are compressed, the gap between the two poles in the pore walls narrows, exciting an electrical signal. The transformation of pressure into an electrical signal that can be amplified and modulated enables polymers to be used as sensors, e.g. for "intelligent" floor coverings that "report" falls at senior citizens´ homes.

Changes in air pressure (acoustic oscillations) can also be converted into electrical signals in this way. As the polymers are easy to make and can be varied in many ways, they hold out the prospect for the development of inexpensive, high-quality flat microphones and loudspeakers. Identifying suitable materials was one of the aims of the project.

Nomen est omen

In the course of the project the team succeeded in describing an unexpected property of the plastic foams it was using: patterned charging is possible, and the polarity in the pores can thus be switched. As these are the first known materials to combine this property with an ability to store charges, Prof. Bauer created the new term "ferroelectret" to describe them. "What makes ferromagnets important is the fact that their polarity can be switched", Bauer explained. "Materials that store charges are referred to as `electrets´. The term coined by us for these polymer foams refers to their ability to combine these two characteristics."

Europe in the lead

The international significance of the ferroelectrets is reflected in the research collaborations in which the Linz group is involved. During the project cooperation agreements were concluded with universities in Darmstadt, Potsdam (Ger) and Tampere (Fi). "Today", said Bauer, "we are part of a pan-European network that also includes a number of firms." The global importance of this alliance will be reflected next October when ferroelectrets will be a topic at an international symposium held by America´s Institute of Electrical and Electronics Engineers (IEEE). The discovery and the team responsible for it will be the subject of an invited lecture. This recognition is proof of the global lead enjoyed by the project, and the new European network of experimental physicists, engineers and materials scientists that FWF funding helped establish.

Contact: Univ.-Prof. Dr. Siegfried Bauer, sbauer@jku.at, Tel. +43-732-2468-9241

Univ.-Prof. Dr. Siegfried Bauer | alfa
Further information:
http://www.fwf.ac.at/en/press/tension.html

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>