Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Foams as Charge Carriers

04.08.2003


Scanning electron microscope picture of a ferroelectretic foam, together with a graphical representation of the charging states in the pores.


A research team in Austria has been unravelling the secrets of the charging of plastic foams. Its findings open the way for the development of flat microphones and loudspeakers, as well as "smart" surfaces that could be used as floor coverings, among other things. The interest in the success of the group´s work - which was co-funded by the Austrian Science Fund (FWF) - has resulted in the integration of the project in a European interdisciplinary research network.

During a thunder storm the electrical tension between the earth and the air is discharged by the lightning and hence lowered. In non-polar polymer foams a comparable process results in the precise opposite - an increase in the electrical charge. First, an electric discharge is induced in the microscopic voids (pores) in foamed plastics by applying an external voltage. The propagation of the discharge is then inhibited by the insulating properties of the polymer foam, resulting in charging of the pore walls. As the non-polar material is non-conductive, the charge is stored there. A team under Prof. Siegfried Bauer at the Johannes Kepler University Linz Institute for Experimental Physics has succeeded in proving the existence of this phenomenon. In so doing it has challenged established scientific doctrine which holds that such states can only exist in polar materials.

Pores with potential



The opposing positive and negative poles in the pores of the foam create an electrical potential. If the charged polymers are compressed, the gap between the two poles in the pore walls narrows, exciting an electrical signal. The transformation of pressure into an electrical signal that can be amplified and modulated enables polymers to be used as sensors, e.g. for "intelligent" floor coverings that "report" falls at senior citizens´ homes.

Changes in air pressure (acoustic oscillations) can also be converted into electrical signals in this way. As the polymers are easy to make and can be varied in many ways, they hold out the prospect for the development of inexpensive, high-quality flat microphones and loudspeakers. Identifying suitable materials was one of the aims of the project.

Nomen est omen

In the course of the project the team succeeded in describing an unexpected property of the plastic foams it was using: patterned charging is possible, and the polarity in the pores can thus be switched. As these are the first known materials to combine this property with an ability to store charges, Prof. Bauer created the new term "ferroelectret" to describe them. "What makes ferromagnets important is the fact that their polarity can be switched", Bauer explained. "Materials that store charges are referred to as `electrets´. The term coined by us for these polymer foams refers to their ability to combine these two characteristics."

Europe in the lead

The international significance of the ferroelectrets is reflected in the research collaborations in which the Linz group is involved. During the project cooperation agreements were concluded with universities in Darmstadt, Potsdam (Ger) and Tampere (Fi). "Today", said Bauer, "we are part of a pan-European network that also includes a number of firms." The global importance of this alliance will be reflected next October when ferroelectrets will be a topic at an international symposium held by America´s Institute of Electrical and Electronics Engineers (IEEE). The discovery and the team responsible for it will be the subject of an invited lecture. This recognition is proof of the global lead enjoyed by the project, and the new European network of experimental physicists, engineers and materials scientists that FWF funding helped establish.

Contact: Univ.-Prof. Dr. Siegfried Bauer, sbauer@jku.at, Tel. +43-732-2468-9241

Univ.-Prof. Dr. Siegfried Bauer | alfa
Further information:
http://www.fwf.ac.at/en/press/tension.html

More articles from Materials Sciences:

nachricht Spin current detection in quantum materials unlocks potential for alternative electronics
16.10.2017 | DOE/Oak Ridge National Laboratory

nachricht Missing atoms in a forgotten crystal bring luminescence
11.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>