Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer Foams as Charge Carriers

04.08.2003


Scanning electron microscope picture of a ferroelectretic foam, together with a graphical representation of the charging states in the pores.


A research team in Austria has been unravelling the secrets of the charging of plastic foams. Its findings open the way for the development of flat microphones and loudspeakers, as well as "smart" surfaces that could be used as floor coverings, among other things. The interest in the success of the group´s work - which was co-funded by the Austrian Science Fund (FWF) - has resulted in the integration of the project in a European interdisciplinary research network.

During a thunder storm the electrical tension between the earth and the air is discharged by the lightning and hence lowered. In non-polar polymer foams a comparable process results in the precise opposite - an increase in the electrical charge. First, an electric discharge is induced in the microscopic voids (pores) in foamed plastics by applying an external voltage. The propagation of the discharge is then inhibited by the insulating properties of the polymer foam, resulting in charging of the pore walls. As the non-polar material is non-conductive, the charge is stored there. A team under Prof. Siegfried Bauer at the Johannes Kepler University Linz Institute for Experimental Physics has succeeded in proving the existence of this phenomenon. In so doing it has challenged established scientific doctrine which holds that such states can only exist in polar materials.

Pores with potential



The opposing positive and negative poles in the pores of the foam create an electrical potential. If the charged polymers are compressed, the gap between the two poles in the pore walls narrows, exciting an electrical signal. The transformation of pressure into an electrical signal that can be amplified and modulated enables polymers to be used as sensors, e.g. for "intelligent" floor coverings that "report" falls at senior citizens´ homes.

Changes in air pressure (acoustic oscillations) can also be converted into electrical signals in this way. As the polymers are easy to make and can be varied in many ways, they hold out the prospect for the development of inexpensive, high-quality flat microphones and loudspeakers. Identifying suitable materials was one of the aims of the project.

Nomen est omen

In the course of the project the team succeeded in describing an unexpected property of the plastic foams it was using: patterned charging is possible, and the polarity in the pores can thus be switched. As these are the first known materials to combine this property with an ability to store charges, Prof. Bauer created the new term "ferroelectret" to describe them. "What makes ferromagnets important is the fact that their polarity can be switched", Bauer explained. "Materials that store charges are referred to as `electrets´. The term coined by us for these polymer foams refers to their ability to combine these two characteristics."

Europe in the lead

The international significance of the ferroelectrets is reflected in the research collaborations in which the Linz group is involved. During the project cooperation agreements were concluded with universities in Darmstadt, Potsdam (Ger) and Tampere (Fi). "Today", said Bauer, "we are part of a pan-European network that also includes a number of firms." The global importance of this alliance will be reflected next October when ferroelectrets will be a topic at an international symposium held by America´s Institute of Electrical and Electronics Engineers (IEEE). The discovery and the team responsible for it will be the subject of an invited lecture. This recognition is proof of the global lead enjoyed by the project, and the new European network of experimental physicists, engineers and materials scientists that FWF funding helped establish.

Contact: Univ.-Prof. Dr. Siegfried Bauer, sbauer@jku.at, Tel. +43-732-2468-9241

Univ.-Prof. Dr. Siegfried Bauer | alfa
Further information:
http://www.fwf.ac.at/en/press/tension.html

More articles from Materials Sciences:

nachricht New gel-like coating beefs up the performance of lithium-sulfur batteries
22.03.2017 | Yale University

nachricht Pulverizing electronic waste is green, clean -- and cold
22.03.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>