Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titania nanotubes make supersensitive hydrogen sensors

30.07.2003


Titania nanotubes at 200 nanometer size. Credit: Penn State, Craig Grimes


Titania nanotubes at 250 nanometer size. Credit: Penn State, Craig Grimes


Titania nanotubes are 1500 times better than the next best material for sensing hydrogen and may be one of the first examples of materials properties changing dramatically when crossing the border between real world sizes and nanoscopic dimensions, according to a Penn State materials scientist.

"Historically, we have viewed sensor technology and enhancements from the point of view of surface area," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering. "The principle in play in titania nanotubes is not surface area, but connectivity of the tiny tubes and we see an incredible change in electric resistance."

Hydrogen entering an array of titania nanotubes flows around all the surfaces, but it also splits into individually charged atoms and permeates the surface of the nanotubes. These hydrogen ions provide electrons for conductivity. The change in conductance signals that hydrogen, above the background level, is present.



"Many researchers have tried to use carbon nanotubes as gas sensors, but they do not work very well," says Grimes. "Titania has really great sensitivity and a nice response."

The Penn State researcher notes that the material can be made by the mile and is very cheap as well as very sensitive. The material is also not used up when sensing hydrogen, but once the gas clears from the tubes, can be used again.

Sensors for hydrogen are used in industrial quality control in food plants and as weapons against terrorism. In a bakery, for example, sensors sniff hydrogen and measure temperature to determine when goods are done. Hydrogen sensors are also used in combustion systems of automobiles to monitor pollution and may be used as diagnostic tools to monitor certain types of bacterial infections in infants.

Grimes, working with Oomman K. Varghese, Dawai Gong, Maggie Paulose and Keat G. Ong, postdoctoral fellows, and Dr. Elizabeth C. Dickey, associate professor of materials science and engineering, looked at nanotubes of 22 and 76 nanometer diameters. They reported their findings in the Aug. 1 issue of Sensors and Actuators B: Chemical and in a recent issue of Advanced Materials.

The 22 nanometer and 76 nanometer tubes differ in surface area by a factor of two, but the response to hydrogen of the smaller tubes is 200 times more sensitive than the 76 nanometer tubes.

"The sensitivity comes from the nanoarchitecture, not the surface area," says Grimes.

The researchers suggest that "the hydrogen molecules get dissociated at the titania surface, diffusing into the titania lattice, and act as electron donors." The researchers believe that this mechanism makes the nanotubes sensitive to hydrogen.

One problem often found in sensors is that they become poisoned, either by the gas they test, or by other gases in the atmosphere, and no longer operate. The researchers tested the titania nanotubes with carbon dioxide, carbon monoxide, ammonia and oxygen finding little interference.

"Our results show that titania nanotube sensors can monitor hydrogen levels from 1 part per million to 4 percent," says Grimes. "Titania nanotubes can be used successfully as hydrogen sensors."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>