Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titania nanotubes make supersensitive hydrogen sensors

30.07.2003


Titania nanotubes at 200 nanometer size. Credit: Penn State, Craig Grimes


Titania nanotubes at 250 nanometer size. Credit: Penn State, Craig Grimes


Titania nanotubes are 1500 times better than the next best material for sensing hydrogen and may be one of the first examples of materials properties changing dramatically when crossing the border between real world sizes and nanoscopic dimensions, according to a Penn State materials scientist.

"Historically, we have viewed sensor technology and enhancements from the point of view of surface area," says Dr. Craig A. Grimes, associate professor of electrical engineering and materials science and engineering. "The principle in play in titania nanotubes is not surface area, but connectivity of the tiny tubes and we see an incredible change in electric resistance."

Hydrogen entering an array of titania nanotubes flows around all the surfaces, but it also splits into individually charged atoms and permeates the surface of the nanotubes. These hydrogen ions provide electrons for conductivity. The change in conductance signals that hydrogen, above the background level, is present.



"Many researchers have tried to use carbon nanotubes as gas sensors, but they do not work very well," says Grimes. "Titania has really great sensitivity and a nice response."

The Penn State researcher notes that the material can be made by the mile and is very cheap as well as very sensitive. The material is also not used up when sensing hydrogen, but once the gas clears from the tubes, can be used again.

Sensors for hydrogen are used in industrial quality control in food plants and as weapons against terrorism. In a bakery, for example, sensors sniff hydrogen and measure temperature to determine when goods are done. Hydrogen sensors are also used in combustion systems of automobiles to monitor pollution and may be used as diagnostic tools to monitor certain types of bacterial infections in infants.

Grimes, working with Oomman K. Varghese, Dawai Gong, Maggie Paulose and Keat G. Ong, postdoctoral fellows, and Dr. Elizabeth C. Dickey, associate professor of materials science and engineering, looked at nanotubes of 22 and 76 nanometer diameters. They reported their findings in the Aug. 1 issue of Sensors and Actuators B: Chemical and in a recent issue of Advanced Materials.

The 22 nanometer and 76 nanometer tubes differ in surface area by a factor of two, but the response to hydrogen of the smaller tubes is 200 times more sensitive than the 76 nanometer tubes.

"The sensitivity comes from the nanoarchitecture, not the surface area," says Grimes.

The researchers suggest that "the hydrogen molecules get dissociated at the titania surface, diffusing into the titania lattice, and act as electron donors." The researchers believe that this mechanism makes the nanotubes sensitive to hydrogen.

One problem often found in sensors is that they become poisoned, either by the gas they test, or by other gases in the atmosphere, and no longer operate. The researchers tested the titania nanotubes with carbon dioxide, carbon monoxide, ammonia and oxygen finding little interference.

"Our results show that titania nanotube sensors can monitor hydrogen levels from 1 part per million to 4 percent," says Grimes. "Titania nanotubes can be used successfully as hydrogen sensors."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Materials Sciences:

nachricht Switched-on DNA
20.02.2017 | Arizona State University

nachricht Using a simple, scalable method, a material that can be used as a sensor is developed
15.02.2017 | University of the Basque Country

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>