Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermal treatment for magneto-resistant materials design

09.07.2003


Reader heads of compact discs and computer hard discs or position and magnetic field sensors are some of the applications of magneto-resistant materials, which are normally obtained by costly methods. Precisely in order to solve this problem, university teacher María Luisa Fernández-Gubieda Ruiz, of the University of the Basque Country, is carrying out research into developing a simpler and more effective method for the preparation of these materials, based on their undergoing thermal treatment. The lecturer explained the new method at a seminar recently given at the Department of Physics at the Public University of Navarre.



Granular solids

Fernández-Gubieda explained that magneto-resistance is the change in resistance manifested by certain materials when subjected to a magnetic field. These changes, she added, can be of great importance and in some systems can reach a variation of up to 40 or 50 per cent.


She explained how, at the beginning of the 90’s, the discovery of huge magneto-resistance in granular multilayers and solids sparked enormous interest both for their peculiar magnetic and transfer properties, as for their possible technological applications as magnetic reading reader heads for very high density and velocity reading devices.

Concretely, Fernández-Gubieda’s research has centred on granular solids which are composed of magnetic particles (for example, iron, cobalt, nickel) saturated in a non-magnetic matrix (for example, copper or silver). With these materials, the professor commented, the origin of the magneto-resistance is principally due to the magnetic scattering of the interface carriers, between the magnetic particles and the matrix. Thus, this quality fundamentally depends on the size of the magnetic particles, of their composition and of the interaction between them.

Thermal treatment
To understand the mechanisms controlling magneto-resistance, Fernández-Gubieda carried out an exhaustive study on the development of the microstructure of the granular solids by means of thermal treatment and analysed its influence on the magnetic properties and magneto-transfer.

The study of the structural evolution was carried out using two complementary techniques: high resolution X-ray diffraction and X-ray absorption spectroscopy, using the Sincrotron at Grenoble and the nuclear reactor at Laue-Langevin, both in France.

As a result of this research, Profesor Fernández-Gubieda observed how, at temperatures greater than 500ºC, a re-dissolution of cobalt and copper was produced, giving rise to an increase in the roughness at the interface between a the nanometric particles of cobalt and the copper matrix, which, in turn, produced the drop in magneto-resistance, she concluded.

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com

More articles from Materials Sciences:

nachricht New design improves performance of flexible wearable electronics
23.06.2017 | North Carolina State University

nachricht Plant inspiration could lead to flexible electronics
22.06.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>