Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titanate thin films becoming a reality with crystal ion slicing

08.07.2003


Technical insights’ advanced coatings and surface technology alert

The recently developed method of crystal ion slicing (CIS) is rapidly gathering interest and attention as a novel way of successfully obtaining single-crystal thin films.

The excellent opto-electrical properties of barium titanate, BaTiO3, make this ferroelectric crystal eminently suitable for applications such as capacitors, pyroelectric detectors, and nonlinear optics. These films possess high dielectric constants and large pyroelectric and nonlinear coefficients.



However, many potential applications for barium titanate require a thin-film form rather than a bulk crystal. Despite substantial advances in deposition technologies for barium titanate thin films, researchers have faced continued difficulty in obtaining high-quality, single-crystal thin films, since they require lattice matching to the growth substrate. CIS looks set to offer researchers a solution to these problems.

"The CIS technique enables one to slice a 0.5 micrometers to 10 micrometers-thick layer of material from a bulk single-crystal wafer by implanting the wafer with high-energy ions and subsequent thermal treatment or wet etching of the buried sacrificial implant-damaged layer," says Technical Insight Industry Manager Girish Solanki.

Essentially, this technique uses ion implantation to modify the chemical and physical properties of materials and obtain mesoscopically thin, single-crystal films.

Post ion slicing, researchers used sophisticated analytical tools such as atomic force microscopy (AFM) to examine the samples’ surface roughness and domain structure. They observed a change in the wafers’ domain structure from single to multidomain as well as a periodic structure in the surface topography.

Using a near-field scanning microwave microscope (NSMM), researchers also noted that the barium titanate film retained the permittivity of the bulk crystal and exhibited low dielectric loss; they attributed the latter to stress induced by residual implanted ions and a thermal expansion mismatch between the substrate and the film.

Observing the large permittivity of the sliced barium titanate films, researchers concluded that it was possible to fabricate a small-sized, large-capacitance, integrated capacitor on CIS single-crystal films.

Commenting on the future of barium titanate, Solanki says, "As far as practical areas of application are concerned, the heterogeneous integration of the material makes it possible to realize multi-functional microwave and optical devices. Barium titanate is also a promising material for memory applications."


###
New analysis by Technical Insights, a business unit of Frost & Sullivan (http://www.Technical-Insights.frost.com), featured in the Advanced Coatings and Surface Technology, examines the potential of a new technology – crystal ion slicing – to produce single-crystal thin films and discusses critical research work being undertaken in this area.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of advanced coatings and surface technology is covered in Advanced Coatings and Surface Technology Alert, a Technical Insights subscription service, and in Supertough Coatings, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Executive summaries and interviews are available to the press.

Advanced Coatings and Surface Technology Alert

Contact:

USA:
Julia Paulson
P: 210-247-3870
F: 210-348-1003
E: jpaulson@frost.com

APAC:
Pramila Gurtoo
DID : 603-6204-5811
Gen : 603-6204-5800
Fax : 603-6201-7402
E: pgurtoo@frost.com

Julia Paulson | EurekAlert!
Further information:
http://www.ti.frost.com/
http://www.frost.com
http://www.technicalinsights.frost.com

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>