Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce first 3-D assembly of magnetic and semiconducting nanoparticles

26.06.2003


A collection of iron oxide nanoparticles (blue) and smaller lead selenide nanoparticles (red) -- a.k.a. quantum dots -- beginning to interact and organize in solution on their way to crystallizing into a binary superlattice. The resulting assembly captures the magnetic properties of the iron oxide while retaining the distinct optical signature of the quantum dots.


A schematic of a binary superlattice where thirteen small lead selenide quantum dots (red) are grouped together, filling the spaces between the 11 nm diameter iron oxide (blue). The distance between the iron oxide particle is exaggerated to allow a clear view of how the lead selenide particles pack together.


Scientists from Columbia University, IBM and the University of New Orleans today announced a new, three-dimensional designer material assembled from two different types of particles only billionths of a meter across.

In the June 26 issue of the journal Nature, the team describes the precision chemistry methods developed to tune the particles’ sizes in increments of less than one nanometer and to tailor the experimental conditions so the particles would assemble themselves into repeating 3-D patterns. The work was supported in part by the National Science Foundation, the independent agency that supports basic research in all fields of science and engineering, through the Center for Nanostructured Materials at Columbia University and by the Defense Advanced Research Agency (DARPA) through programs on metamaterials and advanced thermoelectric materials.

Designing new materials with otherwise unattainable properties, sometimes referred to as "metamaterials," is one of the promises of nanotechnology. Two-dimensional patterns had previously been created from gold nanoparticles of different sizes and mixtures of gold and silver. Extending this concept to three dimensions with more diverse types of materials demonstrates the ability to bring more materials together than previously realized.



"What excites us the most is that this is a modular assembly method that will let us bring almost any materials together," said Christopher Murray, manager of nanoscale materials and devices at IBM Research. "We’ve demonstrated the ability to bring together complementary materials with an eye to creating materials with interesting custom properties."

Murray worked with Stephen O’Brien, assistant professor of applied physics and applied mathematics at Columbia University; Franz Redl, a postdoctoral researcher affiliated with both Columbia and IBM; and Kyung Sang Cho, a post-doctoral researcher affiliated with IBM and supported by the Advanced Materials Research Institute of the University of New Orleans.

The scientists chose the materials for the experiments specifically because of their dissimilar, yet complementary properties. Lead selenide is a semiconductor that has applications in infrared detectors and thermal imaging and can be tuned to be more sensitive to specific infrared wavelengths. The other material, magnetic iron oxide, is best known for its use in the coatings for certain magnetic recording media.

The combination of these nanoparticles may have novel magneto-optical properties as well as properties key to the realization of quantum computing. For example, it might be possible to modulate the material’s optical properties by applying an external magnetic field.

"This was a demonstration of the ability to create such materials," O’Brien said. "Given the unique combination of these nanoscale materials, we’re in uncharted territory with respect to the properties, which we will be working on in the future."

The first step was to create the nanoparticles. The particle sizes were calculated from the mathematical ideal of the structures they wanted to create. In addition to fine-tuning the sizes, the particles had to be very uniform, all within 5 percent of the target size. They settled on iron oxide particles 11 nanometers in diameter, which were created by Redl, and lead selenide particles 6 nanometers in diameter, created by Cho. There are approximately 60,000 atoms in one of the iron oxide nanoparticles and approximately 3,000 atoms in the lead selenide particles.

Next, Redl assembled the nanoparticles--or more to the point, had the particles assemble themselves--into three different repeating 3-D patterns by tailoring the experimental conditions. Forming these so-called "crystal structures," as opposed to random mixtures of nanoparticles, is essential for the composite material to exhibit consistent, predictable behaviors. Various other materials are known to assemble spontaneously into these structures of close-packed particles, but none has been made of two components in three dimensions and at the length scales reported in the Nature paper.

"The precise and energy-efficient self-assembly of matter into material structures with properties that cannot be achieved otherwise is an important goal for nanotechnology," said Mihail Roco, NSF senior advisor for nanotechnology and chair of the National Science and Technology Council’s Subcommittee on Nanoscale Science and Engineering. "This is just one way that nanotechnology will help foster ’the next industrial revolution.’"



Media Contacts:
Joseph Kennedy, Columbia University, 212-854-9752, jjk2109@columbia.edu
My Luu, IBM, 914-945-2988, myluu@us.ibm.com
David Hart, NSF, 703-292-7737, dhart@nsf.gov


NSF Program Officer: Carmen Huber, 703-292-4939, chuber@nsf.gov
Stephen O’Brien, Columbia University, 212-854-9478, so188@columbia.edu
Christopher Murray, IBM, 914-945-3021, cbmurray@us.ibm.com

About the NSF Center for Nanostructured Materials, Columbia University
The Columbia University Materials Research Science and Engineering Center (MRSEC) is an interdisciplinary team of university, industrial, and national laboratory scientists and engineers working together to develop and examine new types of nanocrystals and ways of assembling them into thin films. http://www.cise.columbia.edu/mrsec/

About IBM Research
IBM Research is the information technology industry’s largest information technology research organization, with more than 3,000 scientists and engineers at eight labs in six countries. For more information about IBM’s nanotechnology research projects: http://www.research.ibm.com/pics/nanotech/

About the National Science Foundation
The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

David Hart | National Science Foundation
Further information:
http://www.nsf.gov/
http://domino.research.ibm.com/Comm/bios.nsf/pages/selfassembly.html
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Materials Sciences:

nachricht Flying: Efficiency thanks to Lightweight Air Nozzles
23.10.2017 | Technische Universität Chemnitz

nachricht Strange but true: Turning a material upside down can sometimes make it softer
20.10.2017 | Universitat Autonoma de Barcelona

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>