Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists announce first 3-D assembly of magnetic and semiconducting nanoparticles

26.06.2003


A collection of iron oxide nanoparticles (blue) and smaller lead selenide nanoparticles (red) -- a.k.a. quantum dots -- beginning to interact and organize in solution on their way to crystallizing into a binary superlattice. The resulting assembly captures the magnetic properties of the iron oxide while retaining the distinct optical signature of the quantum dots.


A schematic of a binary superlattice where thirteen small lead selenide quantum dots (red) are grouped together, filling the spaces between the 11 nm diameter iron oxide (blue). The distance between the iron oxide particle is exaggerated to allow a clear view of how the lead selenide particles pack together.


Scientists from Columbia University, IBM and the University of New Orleans today announced a new, three-dimensional designer material assembled from two different types of particles only billionths of a meter across.

In the June 26 issue of the journal Nature, the team describes the precision chemistry methods developed to tune the particles’ sizes in increments of less than one nanometer and to tailor the experimental conditions so the particles would assemble themselves into repeating 3-D patterns. The work was supported in part by the National Science Foundation, the independent agency that supports basic research in all fields of science and engineering, through the Center for Nanostructured Materials at Columbia University and by the Defense Advanced Research Agency (DARPA) through programs on metamaterials and advanced thermoelectric materials.

Designing new materials with otherwise unattainable properties, sometimes referred to as "metamaterials," is one of the promises of nanotechnology. Two-dimensional patterns had previously been created from gold nanoparticles of different sizes and mixtures of gold and silver. Extending this concept to three dimensions with more diverse types of materials demonstrates the ability to bring more materials together than previously realized.



"What excites us the most is that this is a modular assembly method that will let us bring almost any materials together," said Christopher Murray, manager of nanoscale materials and devices at IBM Research. "We’ve demonstrated the ability to bring together complementary materials with an eye to creating materials with interesting custom properties."

Murray worked with Stephen O’Brien, assistant professor of applied physics and applied mathematics at Columbia University; Franz Redl, a postdoctoral researcher affiliated with both Columbia and IBM; and Kyung Sang Cho, a post-doctoral researcher affiliated with IBM and supported by the Advanced Materials Research Institute of the University of New Orleans.

The scientists chose the materials for the experiments specifically because of their dissimilar, yet complementary properties. Lead selenide is a semiconductor that has applications in infrared detectors and thermal imaging and can be tuned to be more sensitive to specific infrared wavelengths. The other material, magnetic iron oxide, is best known for its use in the coatings for certain magnetic recording media.

The combination of these nanoparticles may have novel magneto-optical properties as well as properties key to the realization of quantum computing. For example, it might be possible to modulate the material’s optical properties by applying an external magnetic field.

"This was a demonstration of the ability to create such materials," O’Brien said. "Given the unique combination of these nanoscale materials, we’re in uncharted territory with respect to the properties, which we will be working on in the future."

The first step was to create the nanoparticles. The particle sizes were calculated from the mathematical ideal of the structures they wanted to create. In addition to fine-tuning the sizes, the particles had to be very uniform, all within 5 percent of the target size. They settled on iron oxide particles 11 nanometers in diameter, which were created by Redl, and lead selenide particles 6 nanometers in diameter, created by Cho. There are approximately 60,000 atoms in one of the iron oxide nanoparticles and approximately 3,000 atoms in the lead selenide particles.

Next, Redl assembled the nanoparticles--or more to the point, had the particles assemble themselves--into three different repeating 3-D patterns by tailoring the experimental conditions. Forming these so-called "crystal structures," as opposed to random mixtures of nanoparticles, is essential for the composite material to exhibit consistent, predictable behaviors. Various other materials are known to assemble spontaneously into these structures of close-packed particles, but none has been made of two components in three dimensions and at the length scales reported in the Nature paper.

"The precise and energy-efficient self-assembly of matter into material structures with properties that cannot be achieved otherwise is an important goal for nanotechnology," said Mihail Roco, NSF senior advisor for nanotechnology and chair of the National Science and Technology Council’s Subcommittee on Nanoscale Science and Engineering. "This is just one way that nanotechnology will help foster ’the next industrial revolution.’"



Media Contacts:
Joseph Kennedy, Columbia University, 212-854-9752, jjk2109@columbia.edu
My Luu, IBM, 914-945-2988, myluu@us.ibm.com
David Hart, NSF, 703-292-7737, dhart@nsf.gov


NSF Program Officer: Carmen Huber, 703-292-4939, chuber@nsf.gov
Stephen O’Brien, Columbia University, 212-854-9478, so188@columbia.edu
Christopher Murray, IBM, 914-945-3021, cbmurray@us.ibm.com

About the NSF Center for Nanostructured Materials, Columbia University
The Columbia University Materials Research Science and Engineering Center (MRSEC) is an interdisciplinary team of university, industrial, and national laboratory scientists and engineers working together to develop and examine new types of nanocrystals and ways of assembling them into thin films. http://www.cise.columbia.edu/mrsec/

About IBM Research
IBM Research is the information technology industry’s largest information technology research organization, with more than 3,000 scientists and engineers at eight labs in six countries. For more information about IBM’s nanotechnology research projects: http://www.research.ibm.com/pics/nanotech/

About the National Science Foundation
The National Science Foundation is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.3 billion. National Science Foundation funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards. The National Science Foundation also awards over $200 million in professional and service contracts yearly.

Receive official National Science Foundation news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

David Hart | National Science Foundation
Further information:
http://www.nsf.gov/
http://domino.research.ibm.com/Comm/bios.nsf/pages/selfassembly.html
http://www.nsf.gov/od/lpa/news/media/start.htm

More articles from Materials Sciences:

nachricht New concept for structural colors
18.05.2018 | Technische Universität Hamburg-Harburg

nachricht Saarbrücken mathematicians study the cooling of heavy plate from Dillingen
17.05.2018 | Universität des Saarlandes

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>