Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature mix-ups to speed materials research

11.06.2003


A new National Institute of Standards and Technology (NIST) project aims to stir up materials research by adapting "lab-on-a-chip" technology to mix and evaluate experimental concoctions at a rapid clip, hastening improvements in products ranging from paints to shampoos to plastics.



Initially, researchers at the NIST Combinatorial Methods Center (NCMC) and several of the NCMC’s company members plan to rev up the search for new or better emulsions--often-complex formulations that are the basis for U.S. product markets totaling more than $50 billion. They will start by deciphering interactions at the interfaces (inter-facial tension) between the various components that make up these viscous mixtures and are key to their performance.

Now, efforts to improve paints, shampoos and other emulsions tend to be time-consuming, trial-and-error exercises. But with tiny "lab-on-chip" devices, much of the process can be automated, permitting rapid, systematic testing of new material formulations.


The project will extend the capabilities of so-called microfluidic systems--tiny, channel-lined devices now used regularly for medical testing. In DNA chips, for example, droplets of genetic material are routed through networks of tiny wells, each one set up for a particular diagnostic test. Material formulations, however, typically contain components--from solvents to different-sized particles--that do not readily mix and circulate through these minute plumbing systems. To accommodate these differences, NCMC researchers have designed and tested credit-card-sized prototypes tailored for viscous materials research. Features include mixers, pumps, reservoirs and computer control of the flow of sample droplets through a network of millimeter-wide channels. Mixture properties will be characterized with real-time image measurement techniques that NIST is developing with an eye on many application areas.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>