Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniature mix-ups to speed materials research

11.06.2003


A new National Institute of Standards and Technology (NIST) project aims to stir up materials research by adapting "lab-on-a-chip" technology to mix and evaluate experimental concoctions at a rapid clip, hastening improvements in products ranging from paints to shampoos to plastics.



Initially, researchers at the NIST Combinatorial Methods Center (NCMC) and several of the NCMC’s company members plan to rev up the search for new or better emulsions--often-complex formulations that are the basis for U.S. product markets totaling more than $50 billion. They will start by deciphering interactions at the interfaces (inter-facial tension) between the various components that make up these viscous mixtures and are key to their performance.

Now, efforts to improve paints, shampoos and other emulsions tend to be time-consuming, trial-and-error exercises. But with tiny "lab-on-chip" devices, much of the process can be automated, permitting rapid, systematic testing of new material formulations.


The project will extend the capabilities of so-called microfluidic systems--tiny, channel-lined devices now used regularly for medical testing. In DNA chips, for example, droplets of genetic material are routed through networks of tiny wells, each one set up for a particular diagnostic test. Material formulations, however, typically contain components--from solvents to different-sized particles--that do not readily mix and circulate through these minute plumbing systems. To accommodate these differences, NCMC researchers have designed and tested credit-card-sized prototypes tailored for viscous materials research. Features include mixers, pumps, reservoirs and computer control of the flow of sample droplets through a network of millimeter-wide channels. Mixture properties will be characterized with real-time image measurement techniques that NIST is developing with an eye on many application areas.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov/

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>