Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parts containing ceramic material

03.06.2003


To date, machines carrying out electroerosion-based machining processes have only had use of automated parameters for metallic materials such as steel. In his thesis, Navarre Public University researcher and lecturer, Iñaki Puertas, presents technologies for those applications using ceramic material, a highly interesting development from a technological viewpoint as it enables the use of ceramics in the fabrication of parts requiring great hardness and durability such as medical prothesis or those designed for use in the aerospace sector.



The technical ceramic materials have a wide range of applications, in situations in which the following are required: resistance to wear or corrosion, high mechanical resistance together with resistance to high temperatures. Despite its exceptional mechanical, chemical and thermal properties, however, technical ceramic materials have not been wholly accepted in industrial applications, mainly due to the difficulties encountered during their manufacture, apart from the high costs associated with the process.

The technological tables, drawn up for the three conducting ceramic materials analysed in the research (hot-pressed boron carbide, silicon-infiltrated silicon carbide and tungsten carbide in cobalt metallic matrix) will enable the choice of suitable operating conditions in the electroerosion process in order to obtain a determined value of surface roughness of the parts. And this in function of two distinct machining strategies: one which maximises the rate of elimination of material and the other which minimises the wear of the electrode. The main types of conducting ceramic materials for industrial application are thus coated.


Electroerosion applied to ceramics

Machining by electroerosion is a non-conventional manufacturing process based on the elimination of material of a part by means of a repeated series of electrical discharges taking place between a tool – known as the electrode – and the part or work piece; all this in the presence of a dielectric fluid or oil. This fluid enables the evacuation of eroded particles from the space between the electrode – and the part. The main disadvantage is that it can only be applied in those cases where the materials are sufficiently conducting. This is why, traditionally, it has been basically applied to metallic materials such as steel. In this research, the process of electroerosion is studied for the three technical ceramic materials which, given their greater conductivity compared with other ceramic materials, are known as ceramic conductors.

These ceramic materials have superior properties to other materials: hardness, resistance to wear, resistance to corrosion and resistance to high temperature.

Obtaining of technological tables

All this has enabled the drawing up technological tables whereby the user, non-expert in the field of electroerosion, can employ a series of recommended values in their machine-tool programming. This is of great interest from a technological point of view, although these tables already existed for metallic materials such as steel, but quite scant – to date - in the case of ceramic conductors.

Contacts
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

gabinete.prensa@unavarra.es

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>