Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parts containing ceramic material

03.06.2003


To date, machines carrying out electroerosion-based machining processes have only had use of automated parameters for metallic materials such as steel. In his thesis, Navarre Public University researcher and lecturer, Iñaki Puertas, presents technologies for those applications using ceramic material, a highly interesting development from a technological viewpoint as it enables the use of ceramics in the fabrication of parts requiring great hardness and durability such as medical prothesis or those designed for use in the aerospace sector.



The technical ceramic materials have a wide range of applications, in situations in which the following are required: resistance to wear or corrosion, high mechanical resistance together with resistance to high temperatures. Despite its exceptional mechanical, chemical and thermal properties, however, technical ceramic materials have not been wholly accepted in industrial applications, mainly due to the difficulties encountered during their manufacture, apart from the high costs associated with the process.

The technological tables, drawn up for the three conducting ceramic materials analysed in the research (hot-pressed boron carbide, silicon-infiltrated silicon carbide and tungsten carbide in cobalt metallic matrix) will enable the choice of suitable operating conditions in the electroerosion process in order to obtain a determined value of surface roughness of the parts. And this in function of two distinct machining strategies: one which maximises the rate of elimination of material and the other which minimises the wear of the electrode. The main types of conducting ceramic materials for industrial application are thus coated.


Electroerosion applied to ceramics

Machining by electroerosion is a non-conventional manufacturing process based on the elimination of material of a part by means of a repeated series of electrical discharges taking place between a tool – known as the electrode – and the part or work piece; all this in the presence of a dielectric fluid or oil. This fluid enables the evacuation of eroded particles from the space between the electrode – and the part. The main disadvantage is that it can only be applied in those cases where the materials are sufficiently conducting. This is why, traditionally, it has been basically applied to metallic materials such as steel. In this research, the process of electroerosion is studied for the three technical ceramic materials which, given their greater conductivity compared with other ceramic materials, are known as ceramic conductors.

These ceramic materials have superior properties to other materials: hardness, resistance to wear, resistance to corrosion and resistance to high temperature.

Obtaining of technological tables

All this has enabled the drawing up technological tables whereby the user, non-expert in the field of electroerosion, can employ a series of recommended values in their machine-tool programming. This is of great interest from a technological point of view, although these tables already existed for metallic materials such as steel, but quite scant – to date - in the case of ceramic conductors.

Contacts
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

gabinete.prensa@unavarra.es

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>