Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parts containing ceramic material

03.06.2003


To date, machines carrying out electroerosion-based machining processes have only had use of automated parameters for metallic materials such as steel. In his thesis, Navarre Public University researcher and lecturer, Iñaki Puertas, presents technologies for those applications using ceramic material, a highly interesting development from a technological viewpoint as it enables the use of ceramics in the fabrication of parts requiring great hardness and durability such as medical prothesis or those designed for use in the aerospace sector.



The technical ceramic materials have a wide range of applications, in situations in which the following are required: resistance to wear or corrosion, high mechanical resistance together with resistance to high temperatures. Despite its exceptional mechanical, chemical and thermal properties, however, technical ceramic materials have not been wholly accepted in industrial applications, mainly due to the difficulties encountered during their manufacture, apart from the high costs associated with the process.

The technological tables, drawn up for the three conducting ceramic materials analysed in the research (hot-pressed boron carbide, silicon-infiltrated silicon carbide and tungsten carbide in cobalt metallic matrix) will enable the choice of suitable operating conditions in the electroerosion process in order to obtain a determined value of surface roughness of the parts. And this in function of two distinct machining strategies: one which maximises the rate of elimination of material and the other which minimises the wear of the electrode. The main types of conducting ceramic materials for industrial application are thus coated.


Electroerosion applied to ceramics

Machining by electroerosion is a non-conventional manufacturing process based on the elimination of material of a part by means of a repeated series of electrical discharges taking place between a tool – known as the electrode – and the part or work piece; all this in the presence of a dielectric fluid or oil. This fluid enables the evacuation of eroded particles from the space between the electrode – and the part. The main disadvantage is that it can only be applied in those cases where the materials are sufficiently conducting. This is why, traditionally, it has been basically applied to metallic materials such as steel. In this research, the process of electroerosion is studied for the three technical ceramic materials which, given their greater conductivity compared with other ceramic materials, are known as ceramic conductors.

These ceramic materials have superior properties to other materials: hardness, resistance to wear, resistance to corrosion and resistance to high temperature.

Obtaining of technological tables

All this has enabled the drawing up technological tables whereby the user, non-expert in the field of electroerosion, can employ a series of recommended values in their machine-tool programming. This is of great interest from a technological point of view, although these tables already existed for metallic materials such as steel, but quite scant – to date - in the case of ceramic conductors.

Contacts
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

gabinete.prensa@unavarra.es

Iñaki Casado Redin | Basque research
Further information:
http://www.unavarra.es

More articles from Materials Sciences:

nachricht Let the good tubes roll
19.01.2018 | DOE/Pacific Northwest National Laboratory

nachricht Method uses DNA, nanoparticles and lithography to make optically active structures
19.01.2018 | Northwestern University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>