Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Electron nanodiffraction technique offers atomic resolution imaging


A new imaging technique that uses electron diffraction waves to improve both image resolution and sensitivity to small structures has been developed by scientists at the University of Illinois at Urbana-Champaign. The technique works on the same principle as X-ray diffraction, but can record structure from a single nanostructure or macromolecule.

Determining the structure of materials -- such as protein crystals -- is currently performed using X-ray diffraction. However, many small structures used in nanotechnology have not been accessible to crystallography, so their structures remain unknown.

"Nature is full of objects that cannot be easily crystallized, including many proteins and nano-sized objects that lack a periodic structure," said Jian-Min (Jim) Zuo, a professor of materials science and engineering at Illinois and corresponding author of a paper to appear in the May 30 issue of the journal Science. "Our technique has the potential to image nonperiodic nanostructures, including biological macromolecules, at atomic resolution."

To demonstrate the effectiveness of their imaging technique, Zuo and his colleagues recorded and processed the diffraction pattern from a double-wall carbon nanotube.

"Carbon nanotubes are of special interest because the mechanical and electrical properties of a nanotube depend upon its structure," said Zuo, who also is a researcher at the Frederick Seitz Materials Research Laboratory on the Illinois campus. "However, only the outermost shell of a carbon nanotube has been imaged by scanning tunneling microscopy with atomic resolution."

Because carbon possesses few electrons, the scattering from an electron beam is inherently weak and typically results in an image with low contrast and poor resolution, Zuo said. Imaging carbon atoms has been a special challenge.

"While conventional electron microscopes can achieve a resolution approaching1 angstrom for many materials," Zuo said, "the resolution limit for carbon in nanotubes is only 3 angstroms."

To image a double-wall carbon nanotube, the researchers first selected a single nanotube target in a transmission electron microscope. Then they illuminated the nanotube with a narrow beam of electrons about 50 nanometers in diameter. After recording the diffraction pattern, they used an oversampling technique and iterative process to retrieve phase information and construct an image with a resolution of 1 angstrom.

"Since this process does not use a lens to form the image, the resolution is not limited by lens aberration," Zuo said. "Lens aberration is the factor that has been limiting the resolution of the best electron microscopes. It’s like the blur when you look through the bottom of a wine bottle."

The complexity of the nanotube image was surprising, Zuo said. "The double-wall nanotube consists of two concentric nanotubes of different helical angles. Like two screws with different pitch, sometimes the nanotube structures line up and sometimes they don’t. This results in a complicated pattern of both accidental coincidences and mismatches."

The ability to generate images from nanoscale diffraction patterns offers a way to determine the structure of nonperiodic objects, from inorganic nanostructures to biological macromolecules, much like X-ray diffraction does for crystals, Zuo said. "Since diffraction is a standard method for determining structure, our nanoarea electron diffraction technique opens a door to examining the structure of individual and highly irregular molecules and nanostructures like clusters and wires."

In addition to Zuo, the team included visiting scientist Ivan Vartanyants and postdoctoral researcher Min Gao at Illinois, and researchers Ruth Zhang and Larry Nagahara at Motorola Labs. The U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC
Further information:

More articles from Materials Sciences:

nachricht Study explains strength gap between graphene, carbon fiber
20.10.2016 | Rice University

nachricht Scientists develop a semiconductor nanocomposite material that moves in response to light
18.10.2016 | Worcester Polytechnic Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>