Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How black is ‘Super Black’?


Scientists at the National Physical Laboratory (NPL), Teddington, Middlesex, UK have good news for manufacturers and users across the optical instrumentation industry. Based on existing processes developed in the US and Japan, a team of researchers at NPL has developed a new technique for commercial manufacturing of ultra-black coatings, which represent one of the blackest, lowest reflectance surfaces developed so far.

Performance of optical instrumentation depends on the quality of materials used in their manufacture. For the accuracy of measurement in the ultra-violet, infra-red and visible regions, optimal radiation detection and minimisation of stray light is crucial.

By studying the effect of different methods of chemical etching on various compositions of nickel-phosphorous alloys, researchers have come up with the most effective commercially available black coating to date. With reflectance as low as 0.35% in the visible region, the coating, known as NPL Super Black or Ni-P black – as it is based on a nickel -phosphorous compound – is set to have a major impact in fields such as radiometry, spectroscopy, optical metrology, and within the aerospace and defence industries.

NPL Super Black has been produced on a small scale at the National Physical Laboratory in the UK for a number of years. Its efficiency in detecting radiation, and reducing stray light in instruments is well known. Until recently however, the process has not been fully understood, and a growing demand for more efficient low reflectance surfaces prompted NPL to conduct the first in-depth research of its kind.

Dr Richard Brown, Senior Research Scientist at NPL, says, “The results are very exciting. The improved understanding of the process means that NPL Super Black will be available to a wider range of users across many areas of science and technology, and its benefits are enormous. One of the advantages of this new black is that it can withstand cryogenic temperatures without cracking.”

NPL’s increased understanding of the process by which the black nickel-phosphorous coating is produced will enable larger scale production of an even higher quality, more effective optical black. As well as increased quality of optical measurement, one of the greatest benefits to manufacturers and users of optical equipment will be the reduction in instrument size and weight, made possible as a result of the increased efficiency of the coating.

Further good news is that the latest manufacturing process allows NPL Super Black to be produced in larger sample sizes. The largest available coated plates were formerly no bigger than 1 to 3cm2, making them too small for many applications. Now, plates can be manufactured in sizes of up to 12cm x 12cm, making them a viable alternative for a wide range of uses.

The advantages of Ni-P black over other coated surfaces are already well established. In addition to its higher absorbance, nickel-phosphorous black coatings do not age significantly compared with painted surfaces, and whereas the painted surfaces would crack at cryogenic temperatures NPL Super Black’s performance is unaffected.

This, combined with the fact that NPL Super Black has the potential to be plated onto a range of materials of different shapes and sizes, including glass and ceramics, will allow greater flexibility of instruments across a range of environmental conditions. Because of its excellent ageing properties, instrument lifespan will also be extended, making NPL ‘Super Black’ an extremely attractive and cost-effective alternative.

Noor Kheir | alfa

More articles from Materials Sciences:

nachricht How nanoscience will improve our health and lives in the coming years
27.10.2016 | University of California - Los Angeles

nachricht 3-D-printed structures shrink when heated
26.10.2016 | Massachusetts Institute of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>