Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How black is ‘Super Black’?

28.05.2003


Scientists at the National Physical Laboratory (NPL), Teddington, Middlesex, UK have good news for manufacturers and users across the optical instrumentation industry. Based on existing processes developed in the US and Japan, a team of researchers at NPL has developed a new technique for commercial manufacturing of ultra-black coatings, which represent one of the blackest, lowest reflectance surfaces developed so far.



Performance of optical instrumentation depends on the quality of materials used in their manufacture. For the accuracy of measurement in the ultra-violet, infra-red and visible regions, optimal radiation detection and minimisation of stray light is crucial.

By studying the effect of different methods of chemical etching on various compositions of nickel-phosphorous alloys, researchers have come up with the most effective commercially available black coating to date. With reflectance as low as 0.35% in the visible region, the coating, known as NPL Super Black or Ni-P black – as it is based on a nickel -phosphorous compound – is set to have a major impact in fields such as radiometry, spectroscopy, optical metrology, and within the aerospace and defence industries.


NPL Super Black has been produced on a small scale at the National Physical Laboratory in the UK for a number of years. Its efficiency in detecting radiation, and reducing stray light in instruments is well known. Until recently however, the process has not been fully understood, and a growing demand for more efficient low reflectance surfaces prompted NPL to conduct the first in-depth research of its kind.

Dr Richard Brown, Senior Research Scientist at NPL, says, “The results are very exciting. The improved understanding of the process means that NPL Super Black will be available to a wider range of users across many areas of science and technology, and its benefits are enormous. One of the advantages of this new black is that it can withstand cryogenic temperatures without cracking.”

NPL’s increased understanding of the process by which the black nickel-phosphorous coating is produced will enable larger scale production of an even higher quality, more effective optical black. As well as increased quality of optical measurement, one of the greatest benefits to manufacturers and users of optical equipment will be the reduction in instrument size and weight, made possible as a result of the increased efficiency of the coating.

Further good news is that the latest manufacturing process allows NPL Super Black to be produced in larger sample sizes. The largest available coated plates were formerly no bigger than 1 to 3cm2, making them too small for many applications. Now, plates can be manufactured in sizes of up to 12cm x 12cm, making them a viable alternative for a wide range of uses.

The advantages of Ni-P black over other coated surfaces are already well established. In addition to its higher absorbance, nickel-phosphorous black coatings do not age significantly compared with painted surfaces, and whereas the painted surfaces would crack at cryogenic temperatures NPL Super Black’s performance is unaffected.

This, combined with the fact that NPL Super Black has the potential to be plated onto a range of materials of different shapes and sizes, including glass and ceramics, will allow greater flexibility of instruments across a range of environmental conditions. Because of its excellent ageing properties, instrument lifespan will also be extended, making NPL ‘Super Black’ an extremely attractive and cost-effective alternative.

Noor Kheir | alfa

More articles from Materials Sciences:

nachricht Gelatine instead of forearm
19.04.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Computers create recipe for two new magnetic materials
18.04.2017 | Duke University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>