Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How black is ‘Super Black’?

28.05.2003


Scientists at the National Physical Laboratory (NPL), Teddington, Middlesex, UK have good news for manufacturers and users across the optical instrumentation industry. Based on existing processes developed in the US and Japan, a team of researchers at NPL has developed a new technique for commercial manufacturing of ultra-black coatings, which represent one of the blackest, lowest reflectance surfaces developed so far.



Performance of optical instrumentation depends on the quality of materials used in their manufacture. For the accuracy of measurement in the ultra-violet, infra-red and visible regions, optimal radiation detection and minimisation of stray light is crucial.

By studying the effect of different methods of chemical etching on various compositions of nickel-phosphorous alloys, researchers have come up with the most effective commercially available black coating to date. With reflectance as low as 0.35% in the visible region, the coating, known as NPL Super Black or Ni-P black – as it is based on a nickel -phosphorous compound – is set to have a major impact in fields such as radiometry, spectroscopy, optical metrology, and within the aerospace and defence industries.


NPL Super Black has been produced on a small scale at the National Physical Laboratory in the UK for a number of years. Its efficiency in detecting radiation, and reducing stray light in instruments is well known. Until recently however, the process has not been fully understood, and a growing demand for more efficient low reflectance surfaces prompted NPL to conduct the first in-depth research of its kind.

Dr Richard Brown, Senior Research Scientist at NPL, says, “The results are very exciting. The improved understanding of the process means that NPL Super Black will be available to a wider range of users across many areas of science and technology, and its benefits are enormous. One of the advantages of this new black is that it can withstand cryogenic temperatures without cracking.”

NPL’s increased understanding of the process by which the black nickel-phosphorous coating is produced will enable larger scale production of an even higher quality, more effective optical black. As well as increased quality of optical measurement, one of the greatest benefits to manufacturers and users of optical equipment will be the reduction in instrument size and weight, made possible as a result of the increased efficiency of the coating.

Further good news is that the latest manufacturing process allows NPL Super Black to be produced in larger sample sizes. The largest available coated plates were formerly no bigger than 1 to 3cm2, making them too small for many applications. Now, plates can be manufactured in sizes of up to 12cm x 12cm, making them a viable alternative for a wide range of uses.

The advantages of Ni-P black over other coated surfaces are already well established. In addition to its higher absorbance, nickel-phosphorous black coatings do not age significantly compared with painted surfaces, and whereas the painted surfaces would crack at cryogenic temperatures NPL Super Black’s performance is unaffected.

This, combined with the fact that NPL Super Black has the potential to be plated onto a range of materials of different shapes and sizes, including glass and ceramics, will allow greater flexibility of instruments across a range of environmental conditions. Because of its excellent ageing properties, instrument lifespan will also be extended, making NPL ‘Super Black’ an extremely attractive and cost-effective alternative.

Noor Kheir | alfa

More articles from Materials Sciences:

nachricht Decoding cement's shape promises greener concrete
08.12.2016 | Rice University

nachricht Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D
08.12.2016 | DOE/Brookhaven National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>