Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-thick clay may yield groundbreaking technology

16.04.2003


An ultrathin film containing 1-nanometer thick clay particles has been created for the first time, an accomplishment that may yield new materials and devices for medicine, electronics and engineering, according to Purdue University and Belgian scientists.


Cliff Johnston uses a laser to look at a clay particle in his Purdue University lab. The laser helps Johnston study the structure and orientation of the clay. This particular layer is approximately 1 million times the thickness of the one nanometer-thick layer researchers recently developed. (Purdue Agricultural Communications photo/Tom Campbell)


Cliff Johnston peers through a model of a 1 nanometer-thick layer of clay at his Purdue University laboratory. It would take 70,000 of the clay layers to equal the thickness of one human hair. Using these ultrathin films, researchers hope to develop new materials that will benefit medicine, electronics and engineering. Johnston, an environmental chemist in the agronomy department, also is a researcher in Purdue’s Birck Nanotechnology Center. (Agricultural Communications photo/Tom Campbell – model courtesy of Darrell Schulze)



Using a method that captures clay particles on a crystal, Purdue and Katholieke Universiteit Leuven research partners were able to produce, see and manipulate a single layer of clay. It would take 70,000 of these layers to equal the thickness of a human hair. The thickness of one clay particle is about 1 nanometer, and being able to see one of these layers is equivalent to standing on Earth and being able to see footprints on the moon.

The researchers’ joint findings will be reported in the May 27 issue of the journal Langmuir, a publication of the American Chemical Society. The report is currently on the publication’s Web site .


"Once you can control and manipulate nano-sized clay particles, then you have the ability to create smart materials by combining the structural support provided by the clay with the functionality of organic molecules, such as dye, enzymes, proteins and polymers," said Cliff Johnston, Purdue professor of agronomy and an environmental chemist. "That allows us to build the clay and the organic molecules into more complex structures."

This could lead to development of sensors to more quickly detect biological and chemical agents, the creation of stronger plastics and other materials, such as self-sealing substances for use on spacecraft.

"When we use an ultrathin hybrid film to make a device, such as a sensor, it will respond faster than a larger device," said Johnston, who also is a researcher with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Clay minerals already have a variety of uses in products such as nanocomposites, vaccines, catalysts and plastics. In these materials, the clay particles consist of many layers.

Creating a film that has a single layer of clay allows researchers to work with the mineral in new ways. Because clay behaves differently when it’s in bulk form composed of numerous layers, its value multiplies in a single-layer form, Johnston said.

"We’re interested in making clay particles smart materials by combining them with functional organic molecules to form hybrid materials," he said. "By doing this, we open a whole spectrum of materials we can develop so they will respond in a particular way in a particular environment.

"It could be a dye molecule that is one color in the presence of a particular contaminant or is sensitive to a change in pH or to a whole range of different things."

Clay particles can provide a semirigid structure or template for organic molecules, Johnston said. By combining other materials, scientists can develop new hybrid materials that are malleable and respond in a particular way.

For instance, clay minerals are currently used to create plastics that are significantly lighter, stronger and more elastic than those without clay. In these materials, the clay minerals are present in multiple layers, Johnston said. This adds stability to the plastic; it melts at a higher temperature; it’s stronger. However, there is limited control over how bulk, multilayer clay and another substance mix.

"Mixing bulk forms of clay is not the same as working with an individual layer, which allows you to manipulate it and to place it where you want it," he said.

In order to produce, directly see and work with a single layer of clay, Johnston and Katholieke Universiteit Leuven colleagues started with a technique called a Langmuir-Blodgett Balance. This involved putting clay particles into water and then adding insoluble organic molecules that have a positively charged tip. As the organic molecules float on the water surface, they attract and bind to the negatively charged clay.

The researchers used a Langmuir trough to force these combined particles into a line. This is akin to ping-pong balls floating in a pool of water and then compressing the water so all the balls are together, Johnston said. Next the scientists inserted a crystal into the water that would attract floating molecules. When the crystal was pulled out of the water, the molecules coated its surface, forming a film.

In order to detect the single layer of clay film, the scientists used infrared techniques, effective because clays absorb infrared light. They then used an atomic force microscope to see the hybrid film.

The investigators plan to continue their research by exploring different ways of making the hybrid films and the types of functionality that can be added or built into the films.

The study’s lead author is Robin Ras, a Katholieke Universiteit (K.U.) Leuven doctoral student in the Center for Surface Chemistry and Catalysis. The other authors are Robert Schoonheydt, K.U. Agricultural and Applied Biological Sciences Department dean and director of the Center for Surface Chemistry and Catalysis; Elias Franses, Purdue professor of chemical engineering; and K.U. Leuven scientists R. Ramaekers, G. Maes, P. Foubert, and F. De Schryver.

The Fund for Scientific Research-Flanders, a bilateral agreement Flanders-Hungary grant and the U.S. Department of Agriculture National Research Initiative provided funding for this work. Johnston also received a K.U. Leuven Fellowship.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Cliff Johnston, (765) 496-1716, clays@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030415.Johnston.nanoclay.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.nano.gov/

More articles from Materials Sciences:

nachricht Physics, photosynthesis and solar cells
01.12.2016 | University of California - Riverside

nachricht New process produces hydrogen at much lower temperature
01.12.2016 | Waseda University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>