Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanometer-thick clay may yield groundbreaking technology

16.04.2003


An ultrathin film containing 1-nanometer thick clay particles has been created for the first time, an accomplishment that may yield new materials and devices for medicine, electronics and engineering, according to Purdue University and Belgian scientists.


Cliff Johnston uses a laser to look at a clay particle in his Purdue University lab. The laser helps Johnston study the structure and orientation of the clay. This particular layer is approximately 1 million times the thickness of the one nanometer-thick layer researchers recently developed. (Purdue Agricultural Communications photo/Tom Campbell)


Cliff Johnston peers through a model of a 1 nanometer-thick layer of clay at his Purdue University laboratory. It would take 70,000 of the clay layers to equal the thickness of one human hair. Using these ultrathin films, researchers hope to develop new materials that will benefit medicine, electronics and engineering. Johnston, an environmental chemist in the agronomy department, also is a researcher in Purdue’s Birck Nanotechnology Center. (Agricultural Communications photo/Tom Campbell – model courtesy of Darrell Schulze)



Using a method that captures clay particles on a crystal, Purdue and Katholieke Universiteit Leuven research partners were able to produce, see and manipulate a single layer of clay. It would take 70,000 of these layers to equal the thickness of a human hair. The thickness of one clay particle is about 1 nanometer, and being able to see one of these layers is equivalent to standing on Earth and being able to see footprints on the moon.

The researchers’ joint findings will be reported in the May 27 issue of the journal Langmuir, a publication of the American Chemical Society. The report is currently on the publication’s Web site .


"Once you can control and manipulate nano-sized clay particles, then you have the ability to create smart materials by combining the structural support provided by the clay with the functionality of organic molecules, such as dye, enzymes, proteins and polymers," said Cliff Johnston, Purdue professor of agronomy and an environmental chemist. "That allows us to build the clay and the organic molecules into more complex structures."

This could lead to development of sensors to more quickly detect biological and chemical agents, the creation of stronger plastics and other materials, such as self-sealing substances for use on spacecraft.

"When we use an ultrathin hybrid film to make a device, such as a sensor, it will respond faster than a larger device," said Johnston, who also is a researcher with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Clay minerals already have a variety of uses in products such as nanocomposites, vaccines, catalysts and plastics. In these materials, the clay particles consist of many layers.

Creating a film that has a single layer of clay allows researchers to work with the mineral in new ways. Because clay behaves differently when it’s in bulk form composed of numerous layers, its value multiplies in a single-layer form, Johnston said.

"We’re interested in making clay particles smart materials by combining them with functional organic molecules to form hybrid materials," he said. "By doing this, we open a whole spectrum of materials we can develop so they will respond in a particular way in a particular environment.

"It could be a dye molecule that is one color in the presence of a particular contaminant or is sensitive to a change in pH or to a whole range of different things."

Clay particles can provide a semirigid structure or template for organic molecules, Johnston said. By combining other materials, scientists can develop new hybrid materials that are malleable and respond in a particular way.

For instance, clay minerals are currently used to create plastics that are significantly lighter, stronger and more elastic than those without clay. In these materials, the clay minerals are present in multiple layers, Johnston said. This adds stability to the plastic; it melts at a higher temperature; it’s stronger. However, there is limited control over how bulk, multilayer clay and another substance mix.

"Mixing bulk forms of clay is not the same as working with an individual layer, which allows you to manipulate it and to place it where you want it," he said.

In order to produce, directly see and work with a single layer of clay, Johnston and Katholieke Universiteit Leuven colleagues started with a technique called a Langmuir-Blodgett Balance. This involved putting clay particles into water and then adding insoluble organic molecules that have a positively charged tip. As the organic molecules float on the water surface, they attract and bind to the negatively charged clay.

The researchers used a Langmuir trough to force these combined particles into a line. This is akin to ping-pong balls floating in a pool of water and then compressing the water so all the balls are together, Johnston said. Next the scientists inserted a crystal into the water that would attract floating molecules. When the crystal was pulled out of the water, the molecules coated its surface, forming a film.

In order to detect the single layer of clay film, the scientists used infrared techniques, effective because clays absorb infrared light. They then used an atomic force microscope to see the hybrid film.

The investigators plan to continue their research by exploring different ways of making the hybrid films and the types of functionality that can be added or built into the films.

The study’s lead author is Robin Ras, a Katholieke Universiteit (K.U.) Leuven doctoral student in the Center for Surface Chemistry and Catalysis. The other authors are Robert Schoonheydt, K.U. Agricultural and Applied Biological Sciences Department dean and director of the Center for Surface Chemistry and Catalysis; Elias Franses, Purdue professor of chemical engineering; and K.U. Leuven scientists R. Ramaekers, G. Maes, P. Foubert, and F. De Schryver.

The Fund for Scientific Research-Flanders, a bilateral agreement Flanders-Hungary grant and the U.S. Department of Agriculture National Research Initiative provided funding for this work. Johnston also received a K.U. Leuven Fellowship.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Cliff Johnston, (765) 496-1716, clays@purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu;

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030415.Johnston.nanoclay.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.nano.gov/

More articles from Materials Sciences:

nachricht Innovate coating extends the life of materials for industrial use
28.09.2016 | Investigación y Desarrollo

nachricht Lowering the Heat Makes New Materials Possible While Saving Energy
26.09.2016 | Penn State Materials Research Institute

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>