Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warped idea: Ways to stop swayed wood may be around the bend

15.04.2003


Dr. Zhiyong Cai, Texas Agricultural Experiment Station forest products researcher, is developing a software program that will help manufacturers make wood products that will not warp. (Texas Agricultural Experiment Station photo by Kathleen Phillips)


Anyone who buys a swayed plank of wood has to be, well, warped.

But a Texas forestry sciences researcher may have a straight-forward computer model just around the bend, saving millions for wood manufacturers and consumers.
t
"Wood is an old material that has been used in construction for thousands of years," said Dr. Zhiyong Cai, Texas Agricultural Experiment Station forest products researcher. "Every place in the world uses wood products, but there still are things we don’t understand such as variability and moisture-related problems such as decay and warping."



Cai’s study examines a new technique to understand why and how wood for walls, furniture and cabinets warps when moisture gradient is present.

"We have to understand warping in order to solve it and prevent it," Cai said. "My study aims at giving wood manufacturers good tools with which to make the right decisions in manufacturing."

According to the Composite Panel Association, warping is a leading technical problem for the industry.

"Severe warping of finished products has the potential to damage a manufacturer’s reputation and significantly increase the cost of making the product," said Cai, noting that often the wood product leaves a factory looking straight only to warp later.

Warping has been studied for a long time, Cai said, but the existing warping control model for manufacturing composite wood has been one-dimensional and has not been updated in almost 40 years.

"Wood composite panels are two-dimensional and can be regarded as a multi-layered product in which each layer has different behaviors, especially when they experience moisture gradients through their thickness," Cai said.

His study developed a two-dimensional warping model based on the mechanics of layered composites. Using commercial spreadsheet software and a complicated math formula, wood panels are modeled as having 10 layers with different orientations and properties.

"Once the model has been given input parameters, it will calculate and plot the overall linear expansion and out-of-plane warping of the wood-based panel," Cai said. That would enable a factory manager to make changes in the manufacturing process to avoid warping of the finished product, he noted.

Cai said the next phase of his research will be to use the computer model in an actual manufacturing setting to see if the model in theory works in practice.

Writer: Kathleen Phillips, (979) 845-2872,ka-phillips@tamu.edu
Contact: Dr. Zhiyong Cai, (979) 458-1417, z-cai@silva.tamu.edu

Kathleen Phillips | Texas A&M University
Further information:
http://agnews.tamu.edu/dailynews/stories/FRSC/Apr1403a.htm

More articles from Materials Sciences:

nachricht New biomaterial could replace plastic laminates, greatly reduce pollution
21.09.2017 | Penn State

nachricht Stopping problem ice -- by cracking it
21.09.2017 | Norwegian University of Science and Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>