Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous ceramic can sort proteins magnetically

25.03.2003


In recent years chemists and materials scientists have enthusiastically searched for ways to make materials with nanoscale pores -- channels comparable in size to organic molecules -- that could be used, among other things, to separate proteins by size. Recently Cornell University researchers developed a method to "self-assemble" such structures by using organic polymers to guide the formation of ceramic structures.


Transmission electron micrographs show, at left, the regular pattern of hexagonal channels in the ceramic material, and at right, the smooth distribution of iron oxide particles (dark spots) within the ceramic matrix.



Now they have advanced another step by incorporating tiny magnetic particles of iron oxide into the walls of porous ceramic structures in a simple "one-pot" self-assembly. Such materials could be used to separate proteins tagged with magnetic materials, or in catalytic processes.

"This enables access, for the first time, to protein-separation technology based on a combination of size exclusion with magnetically assisted separation," explains Ulrich Wiesner, professor of materials science at Cornell, in Ithaca, N.Y., lead investigator for the research. One application could be the separation of a single protein out of the thousands found in blood serum.


The new research will be described in a paper by Cornell graduate student Carlos Garcia and research associate Yuanming Zhang, Wiesner and Francis DiSalvo, Cornell professor of chemistry and director of the Cornell Center for Materials Research (CCMR), in a forthcoming issue of the authoritative German journal of chemistry, Angewandte Chemie. Wiesner will discuss this and other work on self-assembled polymer-ceramic hybrids at the 225th national meeting of the American Chemical Society in New Orleans at 1:30 p.m. CST Monday, March 24, as part of a symposium on hybrid materials.

Wiesner’s team creates porous structures by mixing organic polymers -- in particular a class known as diblock copolymers -- with silica-type ceramics. Under the right conditions the materials self-assemble into polymer channels surrounded by a polymer-ceramic composite. This is "calcined," or exposed to extreme heat to vaporize organic components, leaving a ceramic honeycombed with tiny passages. By controlling the polymer molecular weight and the relative amounts of polymer and ceramic, they control the size of the passages. In the latest work, iron ethoxide powder is added to the polymer-ceramic mix. The iron is dispersed throughout the ceramic portion of the structure.

When the material is calcined in the presence of oxygen, the iron transforms into nanoparticles of crystalline iron oxide -- in a so-called "lamda" form that has magnetic properties -- embedded in the walls of the passages. The Cornell researchers note that apparently the surrounding silica-type matrix prevents the iron oxide from converting into a more stable, non-magnetic "alpha" form under calcination.

X-ray scattering and transmission electron microscopy (TEM) verified that the initial hexagonal cylinder composite structure is preserved under calcination. Measurements with a superconducting magnetometer verified that the nanometer-sized iron oxide particles within the pore walls are superparamagnetic -- that is, their magnetic properties can be switched on and off by the application of external magnetic fields. The TEM images show the iron oxide particles to be about 5 nanometers in size (a nanometer is one billionth of a meter), a figure that agrees with theoretical predictions based on magnetometer data.

One use for these novel materials, Wiesner suggests, would be to separate proteins or other biological molecules both by size exclusion and magnetic interactions. If a magnetic field is applied to the ceramic structure, molecules tagged with magnetic material would be held back. After other molecules have passed through, the field is turned off and the selected molecule is released.

The porous materials also could be used in catalytic conversion. Iron oxide, for example, is used as a catalyst in converting carbon monoxide to carbon dioxide. In theory, Wiesner says, these materials could be made with a wide variety of metals, making other catalytic processes possible. The material is stable at temperatures up to 800 degrees Centigrade (1,472 degrees Fahrenheit), making it usable in many high-temperature catalytic processes.

Other researchers have experimented with adding magnetic particles to a porous ceramic structure after it is formed, by depositing the particles on the inner surfaces of the pores. This risks clogging the pores, Wiesner says. In the latest experiments, the iron oxide particles are embedded within the ceramic walls. The form of iron oxide created in this process is known as lamda-Fe2O3 . Non-magnetic alpha-Fe2O3 , with a different arrangement of atoms in the molecule, is usually observed after exposure to the high temperatures of calcination. The research was supported by the National Science Foundation, Phillip Morris CCMR, which is a Materials Research Science and Engineering Center of the National Science Foundation.

Bill Steele | EurekAlert!
Further information:
http://www.ccmr.cornell.edu/~uli/

More articles from Materials Sciences:

nachricht Argon is not the 'dope' for metallic hydrogen
24.03.2017 | Carnegie Institution for Science

nachricht Researchers make flexible glass for tiny medical devices
24.03.2017 | Brigham Young University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>