Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Porous ceramic can sort proteins magnetically

25.03.2003


In recent years chemists and materials scientists have enthusiastically searched for ways to make materials with nanoscale pores -- channels comparable in size to organic molecules -- that could be used, among other things, to separate proteins by size. Recently Cornell University researchers developed a method to "self-assemble" such structures by using organic polymers to guide the formation of ceramic structures.


Transmission electron micrographs show, at left, the regular pattern of hexagonal channels in the ceramic material, and at right, the smooth distribution of iron oxide particles (dark spots) within the ceramic matrix.



Now they have advanced another step by incorporating tiny magnetic particles of iron oxide into the walls of porous ceramic structures in a simple "one-pot" self-assembly. Such materials could be used to separate proteins tagged with magnetic materials, or in catalytic processes.

"This enables access, for the first time, to protein-separation technology based on a combination of size exclusion with magnetically assisted separation," explains Ulrich Wiesner, professor of materials science at Cornell, in Ithaca, N.Y., lead investigator for the research. One application could be the separation of a single protein out of the thousands found in blood serum.


The new research will be described in a paper by Cornell graduate student Carlos Garcia and research associate Yuanming Zhang, Wiesner and Francis DiSalvo, Cornell professor of chemistry and director of the Cornell Center for Materials Research (CCMR), in a forthcoming issue of the authoritative German journal of chemistry, Angewandte Chemie. Wiesner will discuss this and other work on self-assembled polymer-ceramic hybrids at the 225th national meeting of the American Chemical Society in New Orleans at 1:30 p.m. CST Monday, March 24, as part of a symposium on hybrid materials.

Wiesner’s team creates porous structures by mixing organic polymers -- in particular a class known as diblock copolymers -- with silica-type ceramics. Under the right conditions the materials self-assemble into polymer channels surrounded by a polymer-ceramic composite. This is "calcined," or exposed to extreme heat to vaporize organic components, leaving a ceramic honeycombed with tiny passages. By controlling the polymer molecular weight and the relative amounts of polymer and ceramic, they control the size of the passages. In the latest work, iron ethoxide powder is added to the polymer-ceramic mix. The iron is dispersed throughout the ceramic portion of the structure.

When the material is calcined in the presence of oxygen, the iron transforms into nanoparticles of crystalline iron oxide -- in a so-called "lamda" form that has magnetic properties -- embedded in the walls of the passages. The Cornell researchers note that apparently the surrounding silica-type matrix prevents the iron oxide from converting into a more stable, non-magnetic "alpha" form under calcination.

X-ray scattering and transmission electron microscopy (TEM) verified that the initial hexagonal cylinder composite structure is preserved under calcination. Measurements with a superconducting magnetometer verified that the nanometer-sized iron oxide particles within the pore walls are superparamagnetic -- that is, their magnetic properties can be switched on and off by the application of external magnetic fields. The TEM images show the iron oxide particles to be about 5 nanometers in size (a nanometer is one billionth of a meter), a figure that agrees with theoretical predictions based on magnetometer data.

One use for these novel materials, Wiesner suggests, would be to separate proteins or other biological molecules both by size exclusion and magnetic interactions. If a magnetic field is applied to the ceramic structure, molecules tagged with magnetic material would be held back. After other molecules have passed through, the field is turned off and the selected molecule is released.

The porous materials also could be used in catalytic conversion. Iron oxide, for example, is used as a catalyst in converting carbon monoxide to carbon dioxide. In theory, Wiesner says, these materials could be made with a wide variety of metals, making other catalytic processes possible. The material is stable at temperatures up to 800 degrees Centigrade (1,472 degrees Fahrenheit), making it usable in many high-temperature catalytic processes.

Other researchers have experimented with adding magnetic particles to a porous ceramic structure after it is formed, by depositing the particles on the inner surfaces of the pores. This risks clogging the pores, Wiesner says. In the latest experiments, the iron oxide particles are embedded within the ceramic walls. The form of iron oxide created in this process is known as lamda-Fe2O3 . Non-magnetic alpha-Fe2O3 , with a different arrangement of atoms in the molecule, is usually observed after exposure to the high temperatures of calcination. The research was supported by the National Science Foundation, Phillip Morris CCMR, which is a Materials Research Science and Engineering Center of the National Science Foundation.

Bill Steele | EurekAlert!
Further information:
http://www.ccmr.cornell.edu/~uli/

More articles from Materials Sciences:

nachricht Lowering the Heat Makes New Materials Possible While Saving Energy
26.09.2016 | Penn State Materials Research Institute

nachricht Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices
26.09.2016 | Lawrence Berkeley National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>