Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayonnaise as Model for Solid Plastics

24.03.2003


Intriguing Structural Strategy Aims at Making Designer Plastics Affordable




The future was supposed to be "plastics," according to advice given in a 1960s movie The Graduate. Many a company thought that future meant the gradual ascendancy of "designer" or specialty plastics, but almost 40 years later the market is still dominated by plastics that can be manufactured cheaply in bulk.

Six researchers from the University of California at Santa Barbara (UCSB) and one at Helsinki University of Technology in Finland report in the March 21 issue of Science a successful example of an intriguing strategy for combining the versatile properties afforded by expensive "designer" plastics with the favorable economics of the old standby, mass-produced plastics. They have done so, quite simply, by finding a way to combine the two types of plastics in one structure.


The resultant material is made mostly of the cheap plastic polystyrene or PS (the stuff of styrofoam®), but the material itself exhibits the properties of the designer plastic--the one (polyaniline) used by the researchers conducts electricity. One of the paper’s authors is UCSB physicist Alan Heeger, who shared the 2000 Nobel Prize in Chemistry for the discovery of conducting polymers such as polyaniline.

UCSB Chemical Engineering Professor Glenn Fredrickson got the idea that led to the reported research while listening at a professional meeting to a lecture on the liquid analogue of the solid material reported in Science. He figured that what could be done for liquids (as in mayonnaise), could be done for solids. Polymer and colloid scientists call such two-phase structures "high internal phase emulsions."

To explain the two-phase structure, Fredrickson begins with the easily envisioned gas-liquid, two-phase version or "foam," as in the head that forms on a newly poured glass of beer.

"This project," said Fredrickson, "is about trying to create a unique two-phase structure in a material like the structure of closed-cell-foam atop beer. That foam has gas bubbles of carbon dioxide entrained by a liquid. The spherical bubbles are close together, and there is a liquid film between them. And the spherical bubbles deform to a polyhedral shape, which enables denser packing than with rigid spheres.

"Imagine," he said, "freezing the beer foam and cutting through it. The honeycomb-like structure you would see is like the solid plastic structure we have produced."

In a standard high internal phase emulsion, the enveloping and the enveloped components are in the same state--liquid. For instance, the vast majority of mayonnaise consists of water (analogous structurally to the carbon dioxide bubble-contents of beer foam). The rest is oil plus surfactants or surface-active agents that stabilize the interfaces of the enclosed water droplets so that mayonnaise, left long in jars, doesn’t flatten.

The researchers are the first to create a two-phase structure in which both components are solids; they therefore add the word "polymeric" to the standard nomenclature. As they state in the abstract of their paper, "The resulting cellular morphology can be viewed as a high internal phase polymeric emulsion."

What they have done is to adapt to solid plastics a morphology widely known in liquid form in the food industry.

The paper’s first author, Raffaele Mezzenga, who now works in that industry at the Nestlé Research Center in Lausanne, Switzerland, conceptualized and conducted the experiments as a postdoctoral fellow shared by Fredrickson and his UCSB collaborator Edward Kramer, a materials professor. Fredrickson’s initial idea evolved in conversations with Kramer. Funding for Mezzenga came from a start-up company PolyE Inc. Heeger and his colleague Daniel Moses provided guidance about and samples of the conducting polyaniline. Another of Fredrickson and Kramer’s postdocs, Janne Ruokolainen, and his thesis advisor at Helsinki, Professor Olli Ikkala, are also authors.

Fredrickson and Kramer are particularly interested in the morphology of two-phase structures. "Phase" in polymer science is a geometric term which pertains to the regions one polymer occupies with respect to another. If, for instance, little balls of one polymer dot the expanse of another (or are embedded), then the balled-up polymer is referred to as "discrete" because the aggregates are distinct from one another. And the polymer of the expanse is referred to as "continuous" because one point on it can be connected to any other point on it by tracing a route around the embedded aggregates.

"The notion of enhancing polymer properties by embedding one in another is standard practice of polymer engineering," said Kramer. "It is to polymers what alloys are to metals. As with alloys, polymer blends usually exhibit properties that differ from the properties of each of the constituents."

With the semiconducting polymer blend reported in the Science paper ("Templating Organic Semiconductors Through Self-Assembly of Polymeric Colloidal Systems"), the key desired transport property is a function only of the expensive designer polymer polyaniline, whose disposition in the polymer blend must be continuous in order to conduct electricity, but continuous in such a way (like the liquid film around the CO2 beer foam) that only a little of this expensive material is used.

In addition to transport (of electrons, molecules, and ions), this honeycomb morphology can also be adapted to perform the opposite function of providing a barrier, required for instance in packaging fresh food products, which decay with exposure to oxygen. The kind of plastic available today to provide that barrier would cost almost as much as or more than most of the package’s contents. The Science technique would enable use of a little of that expensive plastic in combination with a cheaper plastic. The resultant material would cost a little more than the cheaper plastic alone, but would provide value by blocking spoilage that would be worth the cost.

The trick that Mezzenga figured out to assemble the polymers into the desired structure entails the use of another polymer in addition to PS and polyaniline. He designed a block copolymer of PS and poly(vinyl pyridine) or PVP that would complex appropriately with the other two components. Ruokolainen and Ikkala assisted this effort.

Block co-polymers are another standard tool of polymer engineering which, in effect, splices together two polymers such that the very long molecule which results has ends with usefully different properties.

As the authors write, "A route for producing semiconducting polymer blends is demonstrated in which a doped pi-conjugated polymer [polyaniline] is forced into a three-dimensionally continuous minor phase by the self-assembly of colloidal particles and block copolymers." (The colloidal particles are PS and the block copolymers, PS-PVP.)

Because this process requires a solvent, Fredrickson points out, "it will be better suited for paints and coatings rather than for bulk materials. Many paints are currently formulated with latex colloidal particles, so the present technology provides a way to introduce new functionality, such as conductivity that could have value in antistatic coatings."

Heeger said, "The concept is simple, but elegant--and the use of block copolymers to direct the formation of the two-phase structure and the cellular morphology provides a general approach to creating ’designer’ materials. Consequently, potential applications of our initial results in the science of new materials go well beyond conducting polymers."

Jacquelyn Savani | University of California, Santa
Further information:
http://www.engineering.ucsb.edu/Announce/mayonnaise_plastics.html

More articles from Materials Sciences:

nachricht New pop-up strategy inspired by cuts, not folds
27.02.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Let it glow
27.02.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>