Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making plastic smarter with protein

24.03.2003


How do you improve on plastic, a modern material that has already changed the way we do everything from design medical devices to build cars? Embed it with specialized proteins called enzymes, says Shekhar Garde, assistant professor of chemical engineering at Rensselaer Polytechnic Institute.

"Such protein-enhanced plastics might someday be able to act as ultra-hygienic surfaces or sensors to detect the presence of various chemicals," says Garde. These types of materials could have a wide range of applications, for example, in the security or medical industries.

Proteins require water to function, however. Nonwatery environments do not provide the driving force necessary to keep proteins in their normally intricately folded state; unfolded, the molecules cease to function. To learn what it takes to successfully integrate proteins into a dry substance such as plastic, Garde and his graduate student Lu Yang use molecular dynamics (MD) simulations to create a computer model of the proteins and study the molecules in both watery and non-watery environments such as organic solvents. They are working in collaboration with Jonathan S. Dordick, the Howard P. Isermann ’42 Professor of Chemical Engineering, who conducted the initial protein research.



Garde and Yang are presenting their research at the 225th national meeting of the American Chemical Society, held March 23-27 in New Orleans, La.

Proteins Are Powerful, but Sensitive

Proteins are "molecular machines," according to Garde, uniquely able to efficiently and reliably conduct chemical processes. Their powerful activity, however, is limited to relatively low temperatures and pressures. Helping proteins adapt to a non-water-based environment may actually increase the resiliency of the molecules and make them useful in situations they otherwise would not survive in, such as exposure to high temperatures or other extreme conditions. In addition to preserving protein’s known actions, the researchers speculate that they may also "discover that proteins could perform some new functions [in dry environments], something that they could not do in water," according to Yang.


CONTACT: Jonathan Dordick 518-276-2899; dordick@rpi.edu Shekhar Garde 518-276-6048; gardes@rpi.edu

CONTACT (During the ACS meeting): The ACS press room 504-586-4650 (Morial Convention Center, room 280)


Joely Johnson | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/

More articles from Materials Sciences:

nachricht Melting solid below the freezing point
23.01.2017 | Carnegie Institution for Science

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>