Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete less sensitive for cracks than previously thought

21.03.2003


Reinforced high-strength concrete can crack due to stresses that develop during the hardening process. However, this has been found to be surprisingly less quick than previously thought. Due to Dutch research, extra steps during the hardening process can be omitted. This will result in cheaper concrete.



Maya Sule from Delft University of Technology tested specimens of high strength concrete (concrete with little water) in a temperature stress testing machine (TSTM). Such tests indicate the progression of the stress development in the concrete specimens. They also ’predict’ the moment at which cracks will occur. Freshly poured concrete radiates heat during the hardening process and expands as a result of this. Upon cooling the concrete contracts again. If this so-called temperature contraction is prevented, for example due to the concrete being poured upon an existing foundation, cracks occur. As high strength concrete contains less water than normal concrete, the contraction is further increased due to the mix drying out on the inside.

The researchers assessed the nature of the crack formation by placing test specimens of non-reinforced high-strength concrete under tension. This led to a single through-crack. However, dependent on the reinforcement method used there were also some test specimens with shallow cracks which did not seriously weaken the test specimen. The non-reinforced test specimen with a single through-crack, completely cracked much more quickly than the reinforced test piece. In other words, reinforced high-strength concrete is less sensitive for cracks than non-reinforced high-strength concrete.


This means that fewer measures to prevent cracking need to be taken during the drying process. In practice this means that the concrete does not have to be cooled as much during the hardening process. Also less contraction joints (which absorb the expansion) need to be made. As well as saving costs this is also better for the environment.

For further information please contact Dr Maya Sule (Department of Materials Science and Technology, Delft University of Technology) tel. +31 (0)15 278 4324, fax +31 (0)15 278 5895, e-mail: m.sule@citg.tudelft.nl. The doctoral thesis was defended on 10 March 2003. Ms Sule’s supervisor was Prof. K. van Breugel.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl/

More articles from Materials Sciences:

nachricht Hidden talents: Converting heat into electricity with pencil and paper
20.02.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht Contacting the molecular world through graphene nanoribbons
19.02.2018 | Elhuyar Fundazioa

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>