Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Concrete less sensitive for cracks than previously thought

21.03.2003


Reinforced high-strength concrete can crack due to stresses that develop during the hardening process. However, this has been found to be surprisingly less quick than previously thought. Due to Dutch research, extra steps during the hardening process can be omitted. This will result in cheaper concrete.



Maya Sule from Delft University of Technology tested specimens of high strength concrete (concrete with little water) in a temperature stress testing machine (TSTM). Such tests indicate the progression of the stress development in the concrete specimens. They also ’predict’ the moment at which cracks will occur. Freshly poured concrete radiates heat during the hardening process and expands as a result of this. Upon cooling the concrete contracts again. If this so-called temperature contraction is prevented, for example due to the concrete being poured upon an existing foundation, cracks occur. As high strength concrete contains less water than normal concrete, the contraction is further increased due to the mix drying out on the inside.

The researchers assessed the nature of the crack formation by placing test specimens of non-reinforced high-strength concrete under tension. This led to a single through-crack. However, dependent on the reinforcement method used there were also some test specimens with shallow cracks which did not seriously weaken the test specimen. The non-reinforced test specimen with a single through-crack, completely cracked much more quickly than the reinforced test piece. In other words, reinforced high-strength concrete is less sensitive for cracks than non-reinforced high-strength concrete.


This means that fewer measures to prevent cracking need to be taken during the drying process. In practice this means that the concrete does not have to be cooled as much during the hardening process. Also less contraction joints (which absorb the expansion) need to be made. As well as saving costs this is also better for the environment.

For further information please contact Dr Maya Sule (Department of Materials Science and Technology, Delft University of Technology) tel. +31 (0)15 278 4324, fax +31 (0)15 278 5895, e-mail: m.sule@citg.tudelft.nl. The doctoral thesis was defended on 10 March 2003. Ms Sule’s supervisor was Prof. K. van Breugel.

Nalinie Moerlie | alfa
Further information:
http://www.nwo.nl/

More articles from Materials Sciences:

nachricht Lowering the Heat Makes New Materials Possible While Saving Energy
26.09.2016 | Penn State Materials Research Institute

nachricht Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices
26.09.2016 | Lawrence Berkeley National Laboratory

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>