Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials

21.03.2003


University of Minnesota researchers have made the first-ever hardness measurements on individual silicon nanospheres and shown that the nanospheres’ hardness falls between the conventional hardness of sapphire and diamond, which are among the hardest known materials. Being able to measure such nanoparticle properties may eventually help scientists design low-cost superhard materials from these nanoscale building blocks.

Up to four times harder than typical silicon-a principal ingredient of computer chips, glass and sand-the nanospheres demonstrate that other materials at the nanoscale, including sapphire, may also have vastly improved mechanical properties. The researchers’ results were published online March 18 by the Journal of the Mechanics and Physics of Solids and will appear in June 2003 issue. The work is supported by the National Science Foundation (NSF), the independent federal agency that supports basic research in all fields of science and engineering.

"These results give us two reasons to be excited," said William Gerberich, chemical engineering and materials science professor at Minnesota and lead author on the paper along with his graduate student William Mook. "We can now look at the properties of these building blocks, and from there, we can begin to design superhard materials. In addition, we’ve now achieved a way to conduct experiments on a nanoscale particle and perform atom-by atom supercomputer simulations on a similarly sized particle."



Such nanospheres might find early applications in rugged components of micro-electromechanical systems (MEMS), according to Gerberich. To produce a small gear, for example, the shape could be etched into a silicon wafer and filled with a composite including silicon carbide or silicon nitride nanospheres. The surrounding silicon could then be selectively etched away.

To make the measurements, the research team first devised a method for producing defect-free silicon nanospheres in which the silicon spheres condensed out of a stream of silicon tetrachloride vapor onto a sapphire surface. (Defects in the spheres reduce the hardness by acting as sites for flow or fracture.) The hardness was measured by squeezing individual particles between a diamond-tipped probe and the sapphire.

The smaller the sphere, the harder it was. The spheres tested ranged in size from 100 nanometers to 40 nanometers in diameter, and the corresponding hardness ranged from 20 gigapascals up to 50 gigapascals for the smallest nanospheres. For comparison, stainless steel has a hardness of 1 gigapascal, sapphire of about 40 gigapascals, and diamond of around 90 gigapascals. Bulk silicon averages about 12 gigapascals.

"People have never had these perfect, defect-free spheres to test before," Gerberich said. "You can compare the silicon nanospheres to materials such as nitrides and carbides, which typically have hardness values in the range of 30 to 40 gigapascals." The research team will study silicon carbide nanospheres next, but they’ll need two diamond surfaces for the experiments, since squeezing a silicon carbide nanosphere would likely drill a hole into sapphire.

"This is the first time that a measurement of mechanical, rather than electromagnetic, properties of nanoparticles has been made, which we can now compare to the results of simulations," Gerberich said. "Mechanical properties of materials at this scale are much more difficult to simulate than electromagnetic properties."

A silicon sphere with a 40-nanometer diameter has approximately 40 million atoms. The spheres examined by the Minnesota researchers were composed of 5 million to 600 million atoms. Because materials science algorithms can simulate this number of atoms on supercomputers, the Minnesota team worked with Michael Baskes of Los Alamos National Laboratory to conduct some preliminary simulations, which corresponded well with the experimental findings.

"Better designs for these sorts of nanocomposites will be based on a better understanding of what goes into them," Gerberich said. "These measurements make it possible to pursue a bottom-up approach to materials design from a mechanical perspective."

David Hart | NSF
Further information:
http://www.sciencedirect.com/science/journal/00225096

More articles from Materials Sciences:

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

nachricht Silk could improve sensitivity, flexibility of wearable body sensors
21.08.2017 | American Chemical Society

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>