Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Measurements Show Silicon Nanospheres Rank Among Hardest Known Materials

21.03.2003


University of Minnesota researchers have made the first-ever hardness measurements on individual silicon nanospheres and shown that the nanospheres’ hardness falls between the conventional hardness of sapphire and diamond, which are among the hardest known materials. Being able to measure such nanoparticle properties may eventually help scientists design low-cost superhard materials from these nanoscale building blocks.

Up to four times harder than typical silicon-a principal ingredient of computer chips, glass and sand-the nanospheres demonstrate that other materials at the nanoscale, including sapphire, may also have vastly improved mechanical properties. The researchers’ results were published online March 18 by the Journal of the Mechanics and Physics of Solids and will appear in June 2003 issue. The work is supported by the National Science Foundation (NSF), the independent federal agency that supports basic research in all fields of science and engineering.

"These results give us two reasons to be excited," said William Gerberich, chemical engineering and materials science professor at Minnesota and lead author on the paper along with his graduate student William Mook. "We can now look at the properties of these building blocks, and from there, we can begin to design superhard materials. In addition, we’ve now achieved a way to conduct experiments on a nanoscale particle and perform atom-by atom supercomputer simulations on a similarly sized particle."



Such nanospheres might find early applications in rugged components of micro-electromechanical systems (MEMS), according to Gerberich. To produce a small gear, for example, the shape could be etched into a silicon wafer and filled with a composite including silicon carbide or silicon nitride nanospheres. The surrounding silicon could then be selectively etched away.

To make the measurements, the research team first devised a method for producing defect-free silicon nanospheres in which the silicon spheres condensed out of a stream of silicon tetrachloride vapor onto a sapphire surface. (Defects in the spheres reduce the hardness by acting as sites for flow or fracture.) The hardness was measured by squeezing individual particles between a diamond-tipped probe and the sapphire.

The smaller the sphere, the harder it was. The spheres tested ranged in size from 100 nanometers to 40 nanometers in diameter, and the corresponding hardness ranged from 20 gigapascals up to 50 gigapascals for the smallest nanospheres. For comparison, stainless steel has a hardness of 1 gigapascal, sapphire of about 40 gigapascals, and diamond of around 90 gigapascals. Bulk silicon averages about 12 gigapascals.

"People have never had these perfect, defect-free spheres to test before," Gerberich said. "You can compare the silicon nanospheres to materials such as nitrides and carbides, which typically have hardness values in the range of 30 to 40 gigapascals." The research team will study silicon carbide nanospheres next, but they’ll need two diamond surfaces for the experiments, since squeezing a silicon carbide nanosphere would likely drill a hole into sapphire.

"This is the first time that a measurement of mechanical, rather than electromagnetic, properties of nanoparticles has been made, which we can now compare to the results of simulations," Gerberich said. "Mechanical properties of materials at this scale are much more difficult to simulate than electromagnetic properties."

A silicon sphere with a 40-nanometer diameter has approximately 40 million atoms. The spheres examined by the Minnesota researchers were composed of 5 million to 600 million atoms. Because materials science algorithms can simulate this number of atoms on supercomputers, the Minnesota team worked with Michael Baskes of Los Alamos National Laboratory to conduct some preliminary simulations, which corresponded well with the experimental findings.

"Better designs for these sorts of nanocomposites will be based on a better understanding of what goes into them," Gerberich said. "These measurements make it possible to pursue a bottom-up approach to materials design from a mechanical perspective."

David Hart | NSF
Further information:
http://www.sciencedirect.com/science/journal/00225096

More articles from Materials Sciences:

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

nachricht Multitasking monolayers
25.07.2017 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>