Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New generation of advanced membranes

18.03.2003


The development of a new generation of membranes based on conducting polymers has been the subject of a recent line of research in the Department of New Materials at CIDETEC, in association with the LEIA Technological Centre.



This involves a field of work wherein the excellent advantages presented by electro-dialysis conventional membranes (continuous separation, low energy consumption, ease of combination with other separation processes, absence of additives) are combined with other, highly promising, properties shown by conducting polymer membranes, with special reference to the possibility of manipulation of the pore size by means of the application of potential differences. These developments target the increasingly specific demands from industrial sectors: surface coating/treatment sector (automobile, printing, locksmiths, machine-tools, etc.), chemicals, agricultural feeds, pharmaceuticals and textiles, etc.

The interest provoked by conducting polymers for their application in membrane technologies is explained when we look at the fundamental specification which an ion interchange membrane has to have: great selectivity, low electric resistance to minimise specific energy consumption and low electro-osmotic flow in order to obtain the maximum possible concentration of salts in the concentration compartment.


One of the drawbacks that these membranes have is that they cannot be considered “adaptable”. Effectively, once manufactured (for example, with a determined pore size, a determined ionic selectivity, etc), it is not possible to modify their properties through an external stimulus to “adapt” them to new process conditions, new effluents, etc. This is why membranes based on conducting polymers have been developed. In this sense, conducting polymers show themselves to be ideal candidates for use as membranes, given the special made-to measure characteristics they have for this application, such as: electrical conductivity, reversible electroactive properties and the possibility of controlling the chemical structure and the free volume of the conducting polymers in order to achieve a specific selectivity.

Soledad Larrocha Redondo | Basque research
Further information:
http://www.cidetec.es

More articles from Materials Sciences:

nachricht Breaking bad metals with neutrons
16.01.2018 | DOE/Argonne National Laboratory

nachricht White graphene makes ceramics multifunctional
16.01.2018 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>