Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New generation of advanced membranes

18.03.2003


The development of a new generation of membranes based on conducting polymers has been the subject of a recent line of research in the Department of New Materials at CIDETEC, in association with the LEIA Technological Centre.



This involves a field of work wherein the excellent advantages presented by electro-dialysis conventional membranes (continuous separation, low energy consumption, ease of combination with other separation processes, absence of additives) are combined with other, highly promising, properties shown by conducting polymer membranes, with special reference to the possibility of manipulation of the pore size by means of the application of potential differences. These developments target the increasingly specific demands from industrial sectors: surface coating/treatment sector (automobile, printing, locksmiths, machine-tools, etc.), chemicals, agricultural feeds, pharmaceuticals and textiles, etc.

The interest provoked by conducting polymers for their application in membrane technologies is explained when we look at the fundamental specification which an ion interchange membrane has to have: great selectivity, low electric resistance to minimise specific energy consumption and low electro-osmotic flow in order to obtain the maximum possible concentration of salts in the concentration compartment.


One of the drawbacks that these membranes have is that they cannot be considered “adaptable”. Effectively, once manufactured (for example, with a determined pore size, a determined ionic selectivity, etc), it is not possible to modify their properties through an external stimulus to “adapt” them to new process conditions, new effluents, etc. This is why membranes based on conducting polymers have been developed. In this sense, conducting polymers show themselves to be ideal candidates for use as membranes, given the special made-to measure characteristics they have for this application, such as: electrical conductivity, reversible electroactive properties and the possibility of controlling the chemical structure and the free volume of the conducting polymers in order to achieve a specific selectivity.

Soledad Larrocha Redondo | Basque research
Further information:
http://www.cidetec.es

More articles from Materials Sciences:

nachricht Glass's off-kilter harmonies
18.01.2017 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Explaining how 2-D materials break at the atomic level
18.01.2017 | Institute for Basic Science

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>