Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic Circuit Rides a Chemical Film

20.02.2003


Chains of molecules known as conducting polymers are versatile materials that can work like electronic circuits. Potential uses include flat panel displays, solar panels, sensing devices and transistors, to name just a few. Their invention won three scientists the Nobel Prize in chemistry.



But to make useful devices from conducting polymers requires a degree of chemical wizardry that often proves elusive. University of Illinois at Chicago chemistry professor Luke Hanley has found a new and effective way around the problem.

Hanley, along with UIC doctoral candidates Sanja Tepavcevic and Yongsoo Choi, has developed a method for growing conducting polymers that he calls Surface Polymerization by Ion-Assisted Deposition, or SPIAD for short. The method is described in the online Journal of the American Chemical Society that appeared Feb. 6, and which will appear in the March 5 print edition. His research was funded through a National Science Foundation grant.


"This is the polymerization, or chemical binding, of small molecules together at the surface to form a larger molecule. This occurs by an ion-assisted deposition process," said Hanley.

"Basically, the way it works is you have a surface upon which you want to grow a thin film. You put that into a vacuum chamber, pump all the air out, and you simultaneously deposit charged ions on to the surface and evaporate neutral molecules onto the surface. These ions and neutrals meet at the surface and form this continuous polymeric film."

Hanley has done work on ion-surface interactions for over a decade and has published a series of papers on taking individual ions and landing them on a surface.

"We’ve been able to show we can control the chemistry and shape of the surface on a nanometer scale," said Hanley. "It allows you to control what this thin film is on the sub-nanometer scale."

Working with thiophene, Hanley and his group tried to land individual ions onto a surface, hoping they’d link up to form a type of conducting polymer known as polythiophene. The ions "formed something," Hanley said, "but it wasn’t an interesting polythiophene. So we brought in both an ion beam and neutral beam at the surface."

Using a commercially available instrument that provides a source of ions, Hanley modified the device to work with organic material, such as thiophene. "We can put organic molecules into it and get out the types of ions that we want," he said. "We can actually grow large areas of films fairly quickly by this method. We’re not quite at manufacturing scale yet, but we’ve demonstrated that we know how to get to that point."

Hanley has high expectations for his conducting polymers and thinks the SPIAD method may open the door to many new and useful materials.

"We’re beginning to explore different film properties using this growth method. I think it shows a lot of promise for creating a whole class of conducting polymers with applications you cannot achieve with existing methods.

"Essentially, this is another tool in the toolbox for producing these useful devices. I think we’ve demonstrated this is a new way to create these types of materials. Now we can look at trying to discover some of those newer materials by this method."

Paul Francuch | UIC News
Further information:
http://www.uic.edu

More articles from Materials Sciences:

nachricht Robust and functional – surface finishing by suspension spraying
19.09.2017 | Fraunhofer-Institut für Keramische Technologien und Systeme IKTS

nachricht Graphene and other carbon nanomaterials can replace scarce metals
19.09.2017 | Chalmers University of Technology

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>