Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists synthesize new porous materials

10.02.2003


New materials will have applications in electronic and optoelectronic devices, electrocatalysis, electroanalysis and sensors


Four different topological types, named UCR-20, UCR-21, UCR-22 and UCR-23, that the new zeolite analog materials possess. Each topological type can be made in a variety of chemical compositions. (A) The 3-dimensional sodalite-based framework in UCR-20. (B) Supertetrahedral clusters are joined into a 6-membered ring in UCR-21 with a cubic ZnS (zinc sulfide) type framework. (C) The 3-dimensional framework of UCR-22 with the cubic ZnS type framework decorated with the core-less supertetrahedral cluster. (D) The 3-dimensional framework of UCR-23 showing channels with the pore size consisting of 16 tetrahedral atoms.



Scientists at the University of California, Riverside have synthesized a large family of semiconducting porous materials that have an unprecedented and diverse chemical composition.

The new materials show several different properties such as photoluminescence, ion exchange, and gas sorption. They also have a large surface area and uniform pore sizes. In addition, they have a pore size larger than zeolites. The synthetic approach has the potential to generate new materials with even larger pore sizes, the scientists report in Science.


"This research represents a major advance in the development of crystalline porous materials," said Pinyung Feng, assistant professor of chemistry and one of the co-authors of the paper. "Porous materials have widespread commercial applications."

Currently, the most important porous materials are zeolites. Zeolites are currently used as adsorbents for non-cryogenic air separation and as solid acid catalyst to crack down large hydrocarbon molecules to make small hydrocarbon molecules such as gasoline and other petrochemical products. Porous materials are also called molecular sieves because their unique pore size allows the distinction of molecules based on their size and shape.

"Properties of porous materials are intimately related to their framework topological features and chemical compositions," explained Feng. "Therefore, the development of porous materials with new compositions and topologies can lead to new applications or much improved current applications."

Today’s porous materials such as zeolites have various limitations. Their pore size is less than 1nm and, therefore, they have little utility in reactions involving large molecules such as pharmaceutical molecules. In addition, because zeolites are made from aluminum, silicon, and oxygen, they are insulators. Therefore, they have little use in applications that utilize electronic, optical, or electrooptical properties.

The new materials reported in Science are a new class of porous materials. Like traditional porous materials, e.g., zeolites, they may find applications in areas such as catalysis and separation. More important, because they combine zeolite-type porosity with semiconductivity, they may have unique applications that are not possible with other materials.

The combination of porosity with semiconductivity in the new materials opens up more applications such as electronic and optoelectronic devices, electrocatalysis, electroanalysis and sensors. These materials may be used as high surface area electrodes for electrochemical cells to molecular scale composite materials for microelectronics and sensor technologies.

"More research is needed to realize the application potential of these materials," said Feng. "Zeolites have a direct impact in many aspects of people’s lives - gasoline production, smog reduction, water softening, cleanup of radioactive wastes, and so on. The materials we have developed are designed to improve and extend the applications of zeolites and, as such, the potential for direct impact on people’s life is significant."

Some examples of possible applications of the new porous materials are:

Electrochemical sensors
The new materials can be used as electrodes in electrochemical sensors. Because of the uniform pore size, the new materials can selectively adsorb pollutants in air or water such as toxic organic molecules and allow these pollutants to be detected selectively based on their size and shape.

Photocatalysts
The new materials can absorb visible lights and serve as photocatalysts. Photocatalysts such as anatase have been used in applications such as water and air purification because they promote photochemical reactions that destroy pollutants.

Solid electrolytes for batteries
Open channels in these new porous materials allow easy ion movement. Therefore, these materials may be used as solid electrolytes in batteries.

Adsorbents for gas separation
Gas separation is a large-scale industrial processes. For example, the manufacture of oxygen is dependent on the separation of air. Porous materials such as zeolite X have been used for this process for many years. The new porous materials developed by UC Riverside researchers possess some structural features that are superior than zeolite X. Further studies are still necessary to determine their efficiency for gas separation.

Iqbal Pittalwala | University of California - River
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=522
http://www.chem.ucr.edu/
http://www.cnas.ucr.edu/

More articles from Materials Sciences:

nachricht One in 5 materials chemistry papers may be wrong, study suggests
15.12.2017 | Georgia Institute of Technology

nachricht Scientists channel graphene to understand filtration and ion transport into cells
11.12.2017 | National Institute of Standards and Technology (NIST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>