Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer program reveals optimum microstructure for new materials

07.01.2003


These images show shapes that a computer program found as the optimum structure for a composite material that conducts both heat and electricity.



Technique could help bring efficiency of biology to man-made materials

A Princeton chemist has developed a general mathematical system for designing materials that perform two functions at once, even when the desired properties sometimes conflict with each other.

Salvatore Torquato and colleagues used computers to calculate the optimum structure for any material that is a composite of two substances with differing properties. The achievement is the first simple example of a mathematically rigorous method for optimizing the design of multifunctional composites, which are an increasingly common kind of material.



The approach could help bring to man-made materials the efficiency of design that characterizes so many biological materials. "Biological materials are inherently multifunctional," said Torquato. "They have evolved over millions of years to cope with a wide range of situations, so they perform a variety of functions well."

A tree, for example, has to support its weight and resist winds while transporting liquids up and down its length, said Torquato, who is a professor in the Princeton Materials Institute as well as the Department of Chemistry. "Until our work, however, there has been no clear and simple example that rigorously demonstrates the effect of competing property demands on composite microstructures."

In addition to its possible applications in materials science, the method may help biologists study natural materials, such as the walls of a cell, to understand why they are built as they are. "Using rigorous optimization techniques, we are now in a position to test some of the basic tenets of biology," Torquato said. "Are there elements of biology -- perhaps subsystems within an organism or cell -- that are optimized in any sense?"

Torquato and co-authors Sangil Hyun, a postdoctoral fellow, and Aleksandar Donev, a graduate student, described their findings in a paper published in the Dec. 23 edition of Physical Review Letters.

In their paper, the scientists demonstrated their approach by finding the ideal structure for a composite that is good at conducting both electricity and heat. Many materials already are good at both those tasks, but Torquato chose ones that are good at only one or the other. Running the scientists’ program, the computer arrived at surprisingly complex shapes as the optimum way in which the two materials should mix with each other at a microscopic scale.

The technique is general and could be used to optimize many properties, Torquato said. The technology already exists to make materials assemble themselves into finely tuned micro-scale patterns like the ones the scientists generated in their demonstration, Torquato said.

"I think it’s phenomenal work and it’s something that is very needed and timely," said Jeff Brinker, a senior scientist at Sandia National Laboratory and professor of chemical and nuclear engineering at the University of New Mexico. Brinker is preparing to collaborate with Torquato to test the idea in actual materials.

As fabrication techniques improve, materials scientists increasingly need such theoretical work to guide them, Brinker said. "How should we direct the self assembly? Sometimes it’s not very intuitive what the optimum structure should be."

The shapes produced by the computer are interesting in themselves, said Torquato. The best structure for simultaneous heat and electricity flow turned out to be a complex shape called a "bicontinuous triply periodic minimal surface," which Torquato recognized from other situations. A minimal surface is one that takes up the least amount of area for a given volume. A soap bubble is a common example of a minimal surface. Usually, this shape arises from a need to minimize surface tension. The researchers were surprised to see a minimal surface in their ideal conductor because neither of their stipulated properties have anything to do with surface tension.

Studying these non-intuitive shapes may offer insights into the relation between structure and function in both biological and man-made materials, Torquato said. "These results and the shapes we found suggest to me that there are incredibly rich opportunities that have not even been tapped into," he said.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/

More articles from Materials Sciences:

nachricht Electron tomography technique leads to 3-D reconstructions at the nanoscale
24.05.2018 | The Optical Society

nachricht These could revolutionize the world
24.05.2018 | Vanderbilt University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>