Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Film on Liquid Mercury Reveals New Properties

15.11.2002


A team of scientists from the U.S. Department of Energy’s Brookhaven National Laboratory, Harvard University, and Bar-Ilan University in Israel have grown ultrathin films made of organic molecules on the surface of liquid mercury. The results, reported in the November 15, 2002, issue of Science, reveal a series of new molecular structures that could lead to novel applications in nanotechnology, which involves manipulating materials at the atomic scale.


This schematic drawing shows how the stearic molecules of the film rearrange as they are added onto the surface of the liquid mercury support



Growing molecular films on liquid surfaces is part of an ongoing activity by Brookhaven scientists to create nanomaterials, which are a few billionths of a meter in thickness. Ultrathin films are becoming increasingly important for fast-developing applications, such as faster and smaller electronic and magnetic devices, advanced biotechnological membranes, and controlled drug release in the human body. The Brookhaven team is a leader in the field of liquid surface-supported film growth, with expertise gained over the past 20 years.

"When you grow a film on a solid surface, the molecules of the film tend to interlock with those of the underlying support," says Benjamin Ocko, the Brookhaven physicist who participated in the study. "But an underlying liquid surface is not ordered and provides an ideal setting for studying ultrathin states of matter without the complications of the solid support."


Ocko and his colleagues first filled a small tray with liquid mercury and then deposited on the surface a nanometer-thin film of stearic acid, an organic waxlike material that is a common component of cell membranes. Since stearic acid is not soluble in mercury, it floats on the surface.


To see how the molecules of the film organize on the surface, the scientists measured how x-rays produced by the National Synchrotron Light Source at Brookhaven scattered off the ultrathin molecular film. Key to the study was a unique instrument used for tilting the x-rays downward onto the liquid mercury surface, which was developed by Peter Pershan, a physicist at Harvard and one of the study’s authors, along with the Brookhaven team.

The scientists discovered that, as the number of molecules deposited on the surface increased, they formed four distinct patterns. "First, when a few molecules are deposited, they tend to take as much space as they can, by lying on the surface," explains Henning Kraack, a physics Ph.D. student from Bar-Ilan and the study’s lead author. "When more molecules are added, a second layer of molecules lies on top of the first one.

"Then, as even more molecules are deposited," Kraack continues, "they ’stand up’ to leave more space to neighboring molecules, allowing them to densely pack in one layer. But even then, before standing up straight, the molecules are first tilted to the side, and stand up completely only when they are ’squeezed’ by other molecules that ’elbow their way through.’"

These observations came as a surprise, since previous studies have shown that, when stearic molecules are deposited on water -- the only other liquid support studied so far -- they only stand up on the surface. "Patterns in which molecules lie flat on a liquid surface have never been observed before," Kraack says.

Moshe Deutsch, a physicist at Bar-Ilan and one of the authors of the study, notes that because the liquid mercury does not seem to influence too much the way the stearic molecules assemble, "growing films on a liquid surface is like growing them without support at all." It might be possible to choose a film pattern, he adds, simply by selecting the appropriate molecular coverage.


"This work shows that without an underlying lattice, we can control film growth," Deutsch says. "By growing other molecules on a liquid support, we will be able to control the size and properties of other films, and thus tailor them for different applications, in particular their use in nanoelectronics and nanosensor technology."

This work was funded by the U.S. Department of Energy, which supports basic research in a variety of scientific fields, the National Science Foundation, and the U.S.-Israel Binational Science Foundation in Jerusalem, Israel.

Karen McNulty Walsh | EurekAlert!
Further information:
http://nslsweb.nsls.bnl.gov/nsls/
http://www.bnl.gov/bnlweb/pubaf/pr/2002/bnlpr111402.htm

More articles from Materials Sciences:

nachricht Nagoya physicists resolve long-standing mystery of structure-less transition
21.08.2017 | Nagoya University

nachricht Scientists from the MSU studied new liquid-crystalline photochrom
21.08.2017 | Lomonosov Moscow State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>