Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers produce strong copper that retains ductility

31.10.2002


This form of copper, produced by Johns Hopkins engineers, is stronger than the normal type of copper, yet it remains ductile, meaning it can stretch without breaking.
Photo by Will Kirk


Ma, a professor of materials science and engineering, and doctoral student Yinmin Wang examine a sample of a new strong form of copper that their team created in a campus lab.
Photo by Will Kirk


Extreme cold and high heat help optimize the metal’s microstructure

Combining old-fashioned metal-working techniques with modern nanotechnology, engineers at The Johns Hopkins University have produced a form of pure copper metal that is six times stronger than normal, with no significant loss of ductility.

The achievement, reported in the Oct. 31 issue of the journal "Nature," is important because earlier attempts to strengthen a pure metal such as copper have almost always resulted in a material that is much less ductile, meaning it is more likely to fracture when it is stretched. Strength, on the other hand, refers to how much stress a metal can tolerate before its shape is permanently deformed.



"We were able to get the strength of the pure copper up to and beyond that of copper alloys without adding any other metals to it and without sacrificing ductility," said En Ma, a professor in the Department of Materials Science and Engineering and a co-author of the paper. Ma said that such strong and tough pure metals could have applications in microelectromechanical systems, for which suitable alloys may be more difficult to produce and may be more prone to corrosion, and in biomedical devices, in which a pure metal may be preferable to alloys that could expose the body to toxic metallic or non-metallic elements.

To make the pure copper stronger, the Johns Hopkins engineers had to employ extreme cold and mechanical manipulation, followed by a carefully designed heat treatment. "A real significance of this project was that we showed what traditional metallurgical processing can do in the new era of nanotechnology," said Yinmin Wang, a doctoral student and lead author of the paper. Ma is Wang’s faculty advisor.

The researchers started with a 1-inch cube of pure commercial copper and dipped it into liquid nitrogen for three to five minutes at a temperature of -196 degrees C (-321 degrees F). After removing it, the researchers rolled the copper flat, cooling the sample between rolling passes, to a final thickness of about 1 mm. This affected the metal’s microscopic crystals, each consisting of atoms arranged in a lattice pattern. The severe rolling deformation created a high density of dislocations, meaning atomic planes had been moved out of their proper position within the lattice. The cold temperatures kept these defects from quickly moving back into their original alignment.

Next, the copper was placed in an oven for three minutes to bake at 200 degrees C (392 degree F.) "As they heated up, the dislocations began to disappear in a process called ’re-crystalization,’" Wang explained. "New, ultra fine crystal grains formed that were almost dislocation-free. The higher the stored dislocations density after rolling, the finer the re-crystallized grains during heating. In our copper, these new grains were only a couple of hundred nanometers in size, several hundred times smaller than the original crystals, making the copper much stronger than it was in its original form."

This change in strength occurred because of the reduction in grain size to a level similar to that of nanocrystalline materials, which are defined as materials with grain sizes less than about 100 nanometers. (One nanometer is one millionth of a millimeter). When the grains are smaller, Ma explained, more grain boundaries exist to block the moving dislocations, and the metal’s strength is increased.

By carefully controlling the temperature and the timing when they heated the metal, however, the Johns Hopkins engineers allowed about 20-25 percent of the copper’s crystals to grow to a larger size in a process called "abnormal grain growth," meaning non-uniform grain growth. According to the researchers, this final mix of ultra fine grains and larger ones, described as a "bimodal distribution," is what gave the new copper its coexisting high strength and ductility. "By manipulating the grain size distribution starting from a nanometer-scaled grain structure, we reached an inhomogeneous microstructure that is stable during stretching," Ma said. "That reinstated the copper’s ability to stretch uniformly without fracture, a feature very important for the formability of the high-strength copper when processing it into different shapes in forming operations."

Next, the researchers plan to test their process with other pure metals as well as metal alloys, which are widely used in manufacturing, to see if it produces the same change in mechanical properties. "Materials with uniformly nanocrystalline grains can give you very high strength, but usually not enough ductility," Ma said. "They are also difficult to process, often involving compaction of tiny nanocrystalline powders. If you want a metal that is both strong and ductile, you may want to go the bulk processing route described in this Nature paper. Our work demonstrates that extraordinary properties can be derived from a nanostructured material by first creating and then tailoring the ultra fine grain structures."


Other co-authors of the "Nature" paper were Mingwei Chen, an associate research scientist, and Fenghua Zhou, a postdoctoral fellow, both affiliated with the Johns Hopkins Department of Mechanical Engineering. The National Science Foundation provided funding for the research.

Images available of the researchers, a sample of the strong copper and microscopic views of the metal; contact Phil Sneiderman

THE JOHNS HOPKINS UNIVERSITY
OFFICE OF NEWS AND INFORMATION
3003 N. Charles Street, Suite 100
Baltimore, Maryland 21218-3843
Phone: 410-516-7160; Fax 410-516-5251

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/~matsci/people/faculty/ma/ma.html
http://www.jhu.edu/~matsci
http://www.jhu.edu/news_info/news/home02/oct02/copper.html

More articles from Materials Sciences:

nachricht Osaka university researchers make the slipperiest surfaces adhesive
18.10.2017 | Osaka University

nachricht Think laterally to sidestep production problems
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>