Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New nanoparticle coating mimics dolphin skin Prevents ’biofouling’ of ship hulls

29.10.2002


Karen Wooley


Dolphins, long considered the second-smartest species on the planet, recognize one another by name, possess a distinct concept of "self’ and, it turns out, have some surprisingly good ideas about techniques for keeping the hulls of maritime ships clean.

Karen L. Wooley, Ph.D., professor of chemistry at Washington University in St. Louis, has noted the shape and texture of dolphin skin and how it naturally prevents marine creatures from clinging to dolphin skin. The observation fits into her study of finding ways to mediate interactions between biological systems and synthetic materials, designing chemical "functionalities," or groups of atoms, that either promote or discourage binding between them.

In one recent example, Wooley and collaborator John-Stephen A. Taylor, Ph.D., Washington University professor of chemistry, hope to employ nanoparticles that will take advantage of naturally occurring chemical interactions to deliver therapeutic drugs directly to diseased cells. At the same time, Wooley currently is developing a group of nontoxic "antifouling" coatings that may one day inhibit marine organisms such as barnacles, tube worms and zoo spores from attaching to, say, the hulls of ships.



"Basically if we understand how these various materials interact at the molecular level, then we can turn the interactions on or turn them off," said Wooley. "With the nanoparticles we want to turn them on; with the antifouling coatings materials we want to turn them off."

Fouling is a huge problem for the U.S. Navy as well as the commercial shipping industry. Marine organisms secrete a type of gluey adhesive protein and, over time, cause physical damage by promoting corrosion of the metal. However, the more pressing problem is their effect on a ship’s performance -- the extra growth on the hull increases friction and drag, leading to increased energy consumption. And fouling is more than just an economic issue; a less fuel-efficient ship emits greater amounts of the greenhouse gas carbon dioxide in addition to sulfur and nitrogen oxides, which promote acid rain.

Wooley presented her research to an international group of science writers, Oct. 27, 2002, at the Council for the Advancement of Science Writing’s New Horizons in Science 40th Annual Briefing. New Horizons was held Oct. 27-30 at Washington University in St. Louis, which sponsored the event. Wooley’s research is supported in part by research grants from the National Science foundation and the Office of Naval Research.

Do like the dolphins do

The key to Wooley’s antifouling agents is, perhaps counter-intuitively, their three-dimensional topography, which mimics such naturally occurring hydrodynamic surfaces as the skin of a dolphin. Using high-powered electron microscopy, researchers have found that dolphin skin, for all its seeming smoothness, is slightly rippled on the nanometer scale. Still, these ripples are not large enough to hinder movement through the water but are small enough that they leave few "niches" for marine creatures to grip.

"For a long time antifouling work was geared toward making super-smooth surfaces," explained Wooley. "It was thought that if the surfaces were super-smooth and had less surface energy then the organisms couldn’t attach.

"In fact, that’s completely false," she continued. Her current antifouling project "completely goes against the grain of what was being done. I think that I generally like to do that -- just try the completely opposite approach and see what happens."

Of course, marine fouling isn’t new, and for years the problem has been combated by applying tin or copper-based coatings, which reduce aquatic attachment but come at a price: copper and tin leach into the surrounding water, polluting the environment. In fact, the International Maritime Organization, an agency of the United Nations, has called for a worldwide ban on the use of the tin-based paint by 2003 and aims to completely remove it from all ships by 2008 -- a timetable that has increased demand for a non-toxic replacement.

Wooley, an organic polymer chemist by trade, became aware of the problem, through the Office of Naval Research (ONR) which for years supported research into fluoropolymers (for instance, Teflon and other non-stick polymers) and other minimally adhesive surfaces. Wooley formulated the idea of mixing two normally incompatible polymers -- a hyperbranched fluoropolymer and a linear polyethylene glycol -- and allowing them to phase-separate into distinct domains, one interspersed in the other. A chemical process called crosslinking then solidifies the mixture, thus creating a heterogeneous coating that, upon close examination, reveals treacherous nano-sized terrain composed of mountains and valleys, ranging from hard to soft, hydrophilic to hydrophobic.

Getting a feel for the terrain

So how does such a coating minimize macroscopic fouling? The key is the complex surface, which makes it difficult for marine organisms to establish a toehold. Wooley’s hypothesis is that, if the coating’s surface features are in the same size-regime as the secreted protein, then the protein will be unable to bind sufficiently to maintain attachment.

"When the polymer surface is first prepared, it looks like a bunch of sub-microscopic mountains but when it’s placed under artificial sea water, the entire surface swells and gives us this inverted structure," Wooley explained. "I think this is really exciting because what it means is that we can ’tune’ the size of the surface features and determine whether our hypothesis is really correct -- do surface feature sizes influence the attachment of marine organisms?"

If she’s right, the implications could be straight out of science fiction: man-made ships protected by layers of synthetic dolphin skin. Mother Nature, it seems, may have some competition.

Questions

Contact: Gerry Everding, Office of Public Affairs, Washington University in St. Louis, (314) 935-6375; gerry_everding@aismail.wustl.edu

Gerry Everding | EurekAlert!
Further information:
http://news-info.wustl.edu/news/casw/wooley.html
http://www.dbbs.wustl.edu/RIB/Wooley.html
http://www.wustl.edu/

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>