Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT model predicts birthplace of defect in a material

02.10.2002


Applications include nanotechnology, more



Defects such as cracks in a material are responsible for everything from malfunctioning microchips to earthquakes. Now MIT engineers have developed a model to predict a defect’s birthplace, its initial features and how it begins to advance through the material.
The model could be especially useful in nanotechnology. "As devices get smaller and smaller, understanding the phenomena of defect nucleation and growth becomes more and more important," said Subra Suresh, head of the Department of Materials Science and Engineering (DMSE). A seemingly minuscule dislocation--a local disorder in the arrangement of atoms inside a material--or a crack can drastically compromise the performance of a device.

"There has been much past work on defects in materials, but no one has really explained how a crack or void nucleates in the first place. This work is a first step to that end," said Suresh, an author of a paper on the work that appeared in a recent issue of Nature.



His coauthors are Ju Li (MIT Ph.D. 2000), now a professor at Ohio State University); Krystyn J. Van Vliet (MIT Ph.D. 2002), now a postdoctoral associate at Harvard University/Children’s Hospital until she joins the MIT faculty next year; Ting Zhu, a graduate student in mechanical engineering; and Sidney Yip, a professor in the Department of Nuclear Engineering and DMSE.

In a commentary published along with the Nature paper, Jonathan Zimmerman of Sandia National Laboratories wrote that the MIT researchers "have achieved a significant step towards understanding the defective world of materials in which we live."

Suresh noted that one of the challenges in materials science is showing a seamless transition from defects on the atomic or molecular scale to the overall performance at the engineering level. "We have not had a [good] handshake between the two," he said.

The model described in Nature provides predictive capabilities that transition smoothly across multiple length scales. "This approach can be used to not only predict nucleation of defects between atoms, but also shearing [slipping] between plates in the Earth, the phenomenon behind earthquakes," Van Vliet noted.

The model "captures many key features observed in experiments," continued Zimmerman in his commentary. As a result, Van Vliet said, "we can use it to make predictions about when and how defects will nucleate, rather than having to do experiments for each material or stress scenario."

In the Nature paper, the researchers also describe how atomic defects like a crack or dislocation--singularities seen on the continuum level--can develop from waves. "It’s like the life of a butterfly, proceeding in different stages," said Li.

The world is filled with invisible waves such as sound waves traveling through the air or shear waves through a solid. Under certain conditions, however, a wave can become unstable. From there, a defect can nucleate in four stages, said Li.

First, the amplitude of the wave grows. Slowly the wave steepens, similar to what happens to ocean waves as they approach the shore. In the third stage, part of the wave becomes so steep that it can no longer be described at the continuum level and must be transferred to an atomic description. In the fourth stage, the atomic-scale shockwave "gets trapped in the rough terrain of the microscopic energy landscape, resulting in a defect," Li said.

The MIT team stresses that the model "was not developed overnight." Rather, it’s based on many years of theory and experiments by myriad others. In addition, "we now have experimental and computational tools that until very recently did not exist," Suresh said. Such tools include the use of a soap-bubble raft as an atomic-scale model of metal structure to visualize defect nucleation (see http://web.mit.edu/newsoffice/nr/2001/bubbles.html), and experiments on metallic surfaces conducted using the equipment available in DMSE’s new NanoMechanical Technology Laboratory (http://web.mit.edu/newsoffice/nr/2002/nanolab.html).

Other key factors in the team’s success were the people involved and their diverse areas of expertise. "Today there are many problems that require these multidisciplinary efforts because they’re so complicated," Yip said. Perhaps most importantly, however, he stressed the researchers’ working relationship. "The great human chemistry in this group gives a really happy flavor to this story."

Elizabeth Thomson | EurekAlert!
Further information:
http://web.mit.edu/newsoffice/www/

More articles from Materials Sciences:

nachricht Manchester scientists tie the tightest knot ever achieved
13.01.2017 | University of Manchester

nachricht CWRU directly measures how perovskite solar films efficiently convert light to power
12.01.2017 | Case Western Reserve University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>