Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT model predicts birthplace of defect in a material


Applications include nanotechnology, more

Defects such as cracks in a material are responsible for everything from malfunctioning microchips to earthquakes. Now MIT engineers have developed a model to predict a defect’s birthplace, its initial features and how it begins to advance through the material.
The model could be especially useful in nanotechnology. "As devices get smaller and smaller, understanding the phenomena of defect nucleation and growth becomes more and more important," said Subra Suresh, head of the Department of Materials Science and Engineering (DMSE). A seemingly minuscule dislocation--a local disorder in the arrangement of atoms inside a material--or a crack can drastically compromise the performance of a device.

"There has been much past work on defects in materials, but no one has really explained how a crack or void nucleates in the first place. This work is a first step to that end," said Suresh, an author of a paper on the work that appeared in a recent issue of Nature.

His coauthors are Ju Li (MIT Ph.D. 2000), now a professor at Ohio State University); Krystyn J. Van Vliet (MIT Ph.D. 2002), now a postdoctoral associate at Harvard University/Children’s Hospital until she joins the MIT faculty next year; Ting Zhu, a graduate student in mechanical engineering; and Sidney Yip, a professor in the Department of Nuclear Engineering and DMSE.

In a commentary published along with the Nature paper, Jonathan Zimmerman of Sandia National Laboratories wrote that the MIT researchers "have achieved a significant step towards understanding the defective world of materials in which we live."

Suresh noted that one of the challenges in materials science is showing a seamless transition from defects on the atomic or molecular scale to the overall performance at the engineering level. "We have not had a [good] handshake between the two," he said.

The model described in Nature provides predictive capabilities that transition smoothly across multiple length scales. "This approach can be used to not only predict nucleation of defects between atoms, but also shearing [slipping] between plates in the Earth, the phenomenon behind earthquakes," Van Vliet noted.

The model "captures many key features observed in experiments," continued Zimmerman in his commentary. As a result, Van Vliet said, "we can use it to make predictions about when and how defects will nucleate, rather than having to do experiments for each material or stress scenario."

In the Nature paper, the researchers also describe how atomic defects like a crack or dislocation--singularities seen on the continuum level--can develop from waves. "It’s like the life of a butterfly, proceeding in different stages," said Li.

The world is filled with invisible waves such as sound waves traveling through the air or shear waves through a solid. Under certain conditions, however, a wave can become unstable. From there, a defect can nucleate in four stages, said Li.

First, the amplitude of the wave grows. Slowly the wave steepens, similar to what happens to ocean waves as they approach the shore. In the third stage, part of the wave becomes so steep that it can no longer be described at the continuum level and must be transferred to an atomic description. In the fourth stage, the atomic-scale shockwave "gets trapped in the rough terrain of the microscopic energy landscape, resulting in a defect," Li said.

The MIT team stresses that the model "was not developed overnight." Rather, it’s based on many years of theory and experiments by myriad others. In addition, "we now have experimental and computational tools that until very recently did not exist," Suresh said. Such tools include the use of a soap-bubble raft as an atomic-scale model of metal structure to visualize defect nucleation (see, and experiments on metallic surfaces conducted using the equipment available in DMSE’s new NanoMechanical Technology Laboratory (

Other key factors in the team’s success were the people involved and their diverse areas of expertise. "Today there are many problems that require these multidisciplinary efforts because they’re so complicated," Yip said. Perhaps most importantly, however, he stressed the researchers’ working relationship. "The great human chemistry in this group gives a really happy flavor to this story."

Elizabeth Thomson | EurekAlert!
Further information:

More articles from Materials Sciences:

nachricht Researchers demonstrate existence of new form of electronic matter
15.03.2018 | University of Illinois at Urbana-Champaign

nachricht Boron can form a purely honeycomb, graphene-like 2-D structure
15.03.2018 | Science China Press

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>