Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon And Diamond

24.09.2002


To make super-durable and strong details it is necessary to use so-called diamond composites, i.e. materials (matrixes) with incorporated tiny diamonds. The matrix is to be durable, strong, wear-proof as well as monolithic by structure ensuring chemical interaction with diamonds. To avoid internal tension this matrix must have physical characteristics close to diamond ones. In other case the detail will collapse under load.



Carbide materials fit all these requirements because they are strong, wear-proof, thermostable and with high thermal conductivity. High thermal conductivity prevents the detail cracking at a temperature drop (as a glass can crack when filling with boiling water). It is impossible to make such materials by sintering diamonds with silicon carbide, because the required temperatures are so high that diamond just will turn into graphite. The sintering diamond grains with carbide at lower temperature and high pressure (about 8.5 GPa) is a rather expensive process and it can be applied only for manufacturing small details of a simple shape.

The scientists from the Saint-Petersburg-based Central Research Institute of Materials and their colleagues from the Royal Institute of Technology (Stockholm) have invented a new method. They have proposed to press half-finished details (blanks) from the powder made of micron-sized diamonds. Then they heated the details in a vacuum oven and saturated them with liquid silicon. During this procedure the diamond surface turns into graphite-like carbon which interacts with liquid silicon. As a result the finished detail represents a monolith of the required shape which consists from small diamonds soldered one with another by silicon carbide, and silicon itself.


Now specialists can produce large details of different shapes. It is impossible to create such materials using other existing methods.

Olga Maksimenko | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-08-16-02_200_e.htm

More articles from Materials Sciences:

nachricht Engineers develop smart material that changes stiffness when twisted or bent
15.02.2018 | Iowa State University

nachricht Breaking local symmetry: Why water freezes but silica forms a glass
14.02.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>