Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon And Diamond

24.09.2002


To make super-durable and strong details it is necessary to use so-called diamond composites, i.e. materials (matrixes) with incorporated tiny diamonds. The matrix is to be durable, strong, wear-proof as well as monolithic by structure ensuring chemical interaction with diamonds. To avoid internal tension this matrix must have physical characteristics close to diamond ones. In other case the detail will collapse under load.



Carbide materials fit all these requirements because they are strong, wear-proof, thermostable and with high thermal conductivity. High thermal conductivity prevents the detail cracking at a temperature drop (as a glass can crack when filling with boiling water). It is impossible to make such materials by sintering diamonds with silicon carbide, because the required temperatures are so high that diamond just will turn into graphite. The sintering diamond grains with carbide at lower temperature and high pressure (about 8.5 GPa) is a rather expensive process and it can be applied only for manufacturing small details of a simple shape.

The scientists from the Saint-Petersburg-based Central Research Institute of Materials and their colleagues from the Royal Institute of Technology (Stockholm) have invented a new method. They have proposed to press half-finished details (blanks) from the powder made of micron-sized diamonds. Then they heated the details in a vacuum oven and saturated them with liquid silicon. During this procedure the diamond surface turns into graphite-like carbon which interacts with liquid silicon. As a result the finished detail represents a monolith of the required shape which consists from small diamonds soldered one with another by silicon carbide, and silicon itself.


Now specialists can produce large details of different shapes. It is impossible to create such materials using other existing methods.

Olga Maksimenko | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-08-16-02_200_e.htm

More articles from Materials Sciences:

nachricht Serendipity uncovers borophene's potential
23.02.2017 | Northwestern University

nachricht Switched-on DNA
20.02.2017 | Arizona State University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>