Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon And Diamond

24.09.2002


To make super-durable and strong details it is necessary to use so-called diamond composites, i.e. materials (matrixes) with incorporated tiny diamonds. The matrix is to be durable, strong, wear-proof as well as monolithic by structure ensuring chemical interaction with diamonds. To avoid internal tension this matrix must have physical characteristics close to diamond ones. In other case the detail will collapse under load.



Carbide materials fit all these requirements because they are strong, wear-proof, thermostable and with high thermal conductivity. High thermal conductivity prevents the detail cracking at a temperature drop (as a glass can crack when filling with boiling water). It is impossible to make such materials by sintering diamonds with silicon carbide, because the required temperatures are so high that diamond just will turn into graphite. The sintering diamond grains with carbide at lower temperature and high pressure (about 8.5 GPa) is a rather expensive process and it can be applied only for manufacturing small details of a simple shape.

The scientists from the Saint-Petersburg-based Central Research Institute of Materials and their colleagues from the Royal Institute of Technology (Stockholm) have invented a new method. They have proposed to press half-finished details (blanks) from the powder made of micron-sized diamonds. Then they heated the details in a vacuum oven and saturated them with liquid silicon. During this procedure the diamond surface turns into graphite-like carbon which interacts with liquid silicon. As a result the finished detail represents a monolith of the required shape which consists from small diamonds soldered one with another by silicon carbide, and silicon itself.


Now specialists can produce large details of different shapes. It is impossible to create such materials using other existing methods.

Olga Maksimenko | Informnauka
Further information:
http://www.informnauka.ru/eng/2002/2002-08-16-02_200_e.htm

More articles from Materials Sciences:

nachricht ADIR Project: Lasers Recover Valuable Materials
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht High-tech sensing illuminates concrete stress testing
20.07.2017 | University of Leeds

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>