Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Welding Creates Tiny Junctions

18.09.2002



Researchers have discovered how to weld together single-walled carbon nanotubes, pure carbon cylinders with remarkable electronic properties. The discovery could pave the way for controlled fabrication of molecular circuits and nanotube networks.

Pulickel Ajayan, professor of materials science at Rensselaer Polytechnic Institute in Troy, N.Y., and his colleagues in Germany, Mexico, the U.K., and Belgium used irradiation and heat to form the welded junctions.

This is the first time single-walled nanotubes have been welded together, although multi-walled nanotubes with junctions previously have been created using growth techniques. The electrical properties of single-walled nanotubes surpass those of multi-walled tubes, which is why so many researchers have been anxious to try this experiment, said Ajayan.



"No one knew if junctions could be created," said Ajayan. "Single-walled carbon nanotubes are perfect cylinders without any defects, but to create junctions between them, inter-tube carbon-carbon bonds need to form. The irradiation and heating process we use creates just enough defects for these bonds to form without damaging their electrical properties."

The results were obtained after several years of ongoing experimentation. The difficulty was finding nanotubes that cross and touch. This is critical for the initiation of inter-tube links. "Unfortunately, we can’t control this type of alignment just yet," Ajayan said.

The researchers used a special electron microscope that has the capability to irradiate and produce the heat necessary for the experiment. The high-voltage microscope, located in Stuttgart, Germany, is one of only a few worldwide.

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Contact: Pulickel Ajayan, 518-276-2322; ajayan@rpi.edu

Patricia Azriel | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/

More articles from Materials Sciences:

nachricht A new tool for discovering nanoporous materials
23.05.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that packaging is becoming intelligent through flash systems?
23.05.2017 | Heraeus Noblelight GmbH

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>