Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lightweight materials may yield safer buildings, longer-lasting tires

11.09.2002


Researchers say they have developed the world’s strongest, lightest solids. Called aerogels, the sturdy materials are a high-tech amalgam of highly porous glass and plastic that is as light as air.



#In light of the events of Sept. 11 and a heightened interest in homeland security, these new materials show promise as lightweight body armor for soldiers, shielding for armored vehicles, and stronger building materials, the researchers say.

The materials could also be used for better window insulation, longer-lasting tires, and lighter, safer aircraft and space vehicles, they say.


A study describing these materials is scheduled to appear in the September 12 print issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"We took the lightest material available and made it 100 times stronger, giving us the strongest, lightest material known to man," says Nicholas Leventis, Ph.D., a chemist with the University of Missouri-Rolla and a chief author of the paper. "Our material appears promising for practically any application that requires lightweight, strong materials."

Aerogels were originally developed in the 1930s. They remained a curiosity until the 1960s, when scientists began to consider them as a medium for storing liquid rocket fuel. The first aerogels were made of silica and had a chemical composition identical to glass. Although lightweight, aerogels have, until now, been extremely brittle and have absorbed moisture easily, which limited their practical applications.

In an effort to improve upon the strength of these materials, Leventis and his associates decided to weave together strings of tiny particles of silica (glass) with polyurethane (a plastic. The resulting material, however, still remained too brittle.

The researchers then decided to cross-link (tie together chemically) the strings of the nano-sized glass particles with polyisocyanate, one of the two components of polyurethane. Like earlier aerogels, the resulting materials were almost as light as air. But the new chemical approach resulted in aerogels that were 100 times more resistant to breakage, and almost totally insensitive to moisture compared with the original version of aerogels made of plain silica.

Aerogels are also known for their high resistance to heat transfer, making them promising as insulating materials. In the near future, the new aerogel nanocomposites will probably appear in insulated windows, refrigerators and thermoses, Leventis predicts.

Other possibilities include more impact-resistant automobile bumpers and stronger, lighter armored vests. The new material can also store liquid fuel, making it useful for safer, more impact-resistant fuel tanks for aircraft and fuel transport vehicles. It can also be used for building lighter, more efficient frames for airplanes and spacecraft, according to the researchers.

The researchers have recently filed patents on their new aerogel technology. Leventis and his associates plan to make aerogels even stronger in the near future.

A few companies are developing aerogels commercially. Despite their fragility, some plain-silica aerogels are already in use on spacecraft to collect cosmic dust for analysis. They are also part of the instrumentation that measures radiation produced within nuclear reactors.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Materials Sciences:

nachricht New approach to revolutionize the production of molecular hydrogen
22.05.2017 | Technische Universität Dresden

nachricht Photocatalyst makes hydrogen production 10 times more efficient
19.05.2017 | Kobe University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>