Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lightweight materials may yield safer buildings, longer-lasting tires

11.09.2002


Researchers say they have developed the world’s strongest, lightest solids. Called aerogels, the sturdy materials are a high-tech amalgam of highly porous glass and plastic that is as light as air.



#In light of the events of Sept. 11 and a heightened interest in homeland security, these new materials show promise as lightweight body armor for soldiers, shielding for armored vehicles, and stronger building materials, the researchers say.

The materials could also be used for better window insulation, longer-lasting tires, and lighter, safer aircraft and space vehicles, they say.


A study describing these materials is scheduled to appear in the September 12 print issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"We took the lightest material available and made it 100 times stronger, giving us the strongest, lightest material known to man," says Nicholas Leventis, Ph.D., a chemist with the University of Missouri-Rolla and a chief author of the paper. "Our material appears promising for practically any application that requires lightweight, strong materials."

Aerogels were originally developed in the 1930s. They remained a curiosity until the 1960s, when scientists began to consider them as a medium for storing liquid rocket fuel. The first aerogels were made of silica and had a chemical composition identical to glass. Although lightweight, aerogels have, until now, been extremely brittle and have absorbed moisture easily, which limited their practical applications.

In an effort to improve upon the strength of these materials, Leventis and his associates decided to weave together strings of tiny particles of silica (glass) with polyurethane (a plastic. The resulting material, however, still remained too brittle.

The researchers then decided to cross-link (tie together chemically) the strings of the nano-sized glass particles with polyisocyanate, one of the two components of polyurethane. Like earlier aerogels, the resulting materials were almost as light as air. But the new chemical approach resulted in aerogels that were 100 times more resistant to breakage, and almost totally insensitive to moisture compared with the original version of aerogels made of plain silica.

Aerogels are also known for their high resistance to heat transfer, making them promising as insulating materials. In the near future, the new aerogel nanocomposites will probably appear in insulated windows, refrigerators and thermoses, Leventis predicts.

Other possibilities include more impact-resistant automobile bumpers and stronger, lighter armored vests. The new material can also store liquid fuel, making it useful for safer, more impact-resistant fuel tanks for aircraft and fuel transport vehicles. It can also be used for building lighter, more efficient frames for airplanes and spacecraft, according to the researchers.

The researchers have recently filed patents on their new aerogel technology. Leventis and his associates plan to make aerogels even stronger in the near future.

A few companies are developing aerogels commercially. Despite their fragility, some plain-silica aerogels are already in use on spacecraft to collect cosmic dust for analysis. They are also part of the instrumentation that measures radiation produced within nuclear reactors.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Materials Sciences:

nachricht An innovative high-performance material: biofibers made from green lacewing silk
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Treated carbon pulls radioactive elements from water
20.01.2017 | Rice University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>