Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lightweight materials may yield safer buildings, longer-lasting tires

11.09.2002


Researchers say they have developed the world’s strongest, lightest solids. Called aerogels, the sturdy materials are a high-tech amalgam of highly porous glass and plastic that is as light as air.



#In light of the events of Sept. 11 and a heightened interest in homeland security, these new materials show promise as lightweight body armor for soldiers, shielding for armored vehicles, and stronger building materials, the researchers say.

The materials could also be used for better window insulation, longer-lasting tires, and lighter, safer aircraft and space vehicles, they say.


A study describing these materials is scheduled to appear in the September 12 print issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

"We took the lightest material available and made it 100 times stronger, giving us the strongest, lightest material known to man," says Nicholas Leventis, Ph.D., a chemist with the University of Missouri-Rolla and a chief author of the paper. "Our material appears promising for practically any application that requires lightweight, strong materials."

Aerogels were originally developed in the 1930s. They remained a curiosity until the 1960s, when scientists began to consider them as a medium for storing liquid rocket fuel. The first aerogels were made of silica and had a chemical composition identical to glass. Although lightweight, aerogels have, until now, been extremely brittle and have absorbed moisture easily, which limited their practical applications.

In an effort to improve upon the strength of these materials, Leventis and his associates decided to weave together strings of tiny particles of silica (glass) with polyurethane (a plastic. The resulting material, however, still remained too brittle.

The researchers then decided to cross-link (tie together chemically) the strings of the nano-sized glass particles with polyisocyanate, one of the two components of polyurethane. Like earlier aerogels, the resulting materials were almost as light as air. But the new chemical approach resulted in aerogels that were 100 times more resistant to breakage, and almost totally insensitive to moisture compared with the original version of aerogels made of plain silica.

Aerogels are also known for their high resistance to heat transfer, making them promising as insulating materials. In the near future, the new aerogel nanocomposites will probably appear in insulated windows, refrigerators and thermoses, Leventis predicts.

Other possibilities include more impact-resistant automobile bumpers and stronger, lighter armored vests. The new material can also store liquid fuel, making it useful for safer, more impact-resistant fuel tanks for aircraft and fuel transport vehicles. It can also be used for building lighter, more efficient frames for airplanes and spacecraft, according to the researchers.

The researchers have recently filed patents on their new aerogel technology. Leventis and his associates plan to make aerogels even stronger in the near future.

A few companies are developing aerogels commercially. Despite their fragility, some plain-silica aerogels are already in use on spacecraft to collect cosmic dust for analysis. They are also part of the instrumentation that measures radiation produced within nuclear reactors.

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Materials Sciences:

nachricht Physicists gain new insights into nanosystems with spherical confinement
27.07.2017 | Johannes Gutenberg Universitaet Mainz

nachricht Getting closer to porous, light-responsive materials
26.07.2017 | Kyoto University

All articles from Materials Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

Satellite data for agriculture

28.07.2017 | Information Technology

Abrupt motion sharpens x-ray pulses

28.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>